Реакции ионного обмена. Условия их необратимости



В растворах электролитов реакции протекают между ионами.

Реакции ионного обмена — окислительно-восстановительная реакция, которая идет в направлении связы­вания ионов, но при которой не происходит изменения степеней окисления.

Условия течения реакций в растворах электролитов до конца:

1) в результате реакции выпадает осадок:

2) в результате реакции выделяется газ:

3) в результате реакции образуется малодиссоциирующее вещество:

Ионный обмен – это процесс, в результате которого ионы, находящиеся в твердой фазе. обмениваются с ионами, находящимися в растворе. Нерастворимое твердое вещество может представлять собой какой-либо природный материал либо синтетическую смолу. Природные материалы, используемые для ионного обмена, включают цеолиты (комплексные алюмосиликаты натрия) и глауконитовый песок.

На поверхности этих твердых веществ имеются электрически заряженные центры, расположенные на более или менее регулярном расстоянии друг от друга. Эти центры удерживают на себе простые ионы с зарядами противоположного знака. Именно эти ионы обмениваются с другими ионами, содержащимися в растворе.

Катионообменники. Катионообменные материалы состоят из трех частей:

1) основная масса, или скелет, обычно обозначаемый символом R–;

2) активные центры (такие группы, как — либо — );

3) катионы, подлежащие обмену (обычно это ионы Н+ или Н3О+).

Когда твердый катионообменник приходит в соприкосновение с раствором, в котором содержатся какие-либо ионы, между ними устанавливается равновесие. Например,

Если первоначально раствор содержит, например, хлорид натрия, то ионы натрия обме­ниваются с ионами водорода и из нижней части колонки вытекает разбавленный раствор соляной кислоты.

Ионообменный материал можно регенерировать (восстанавливать), промывая колонку разбавленной соляной кислотой. Это приводит к смещению влево рас­сматриваемого равновесия, в результате чего ионы натрия замещаются ионами водорода.

Анионообменники. Анионообменник удаляет из раствора анионы. Типичным при­мером анионного обмена является следующее равновесие:

Для регенерации анионообменника может использоваться какое-либо основание, на­пример раствор гидроксида натрия. Это сдвигает указанное равновесие влево.

 

1. Если образуется осадок (¯) (смотри таблицу растворимости)

 

Pb(NO3)2 + 2KI ® PbI2¯ + 2KNO3

Pb2+ + 2I- ® PbI2¯

 

2. Если выделяется газ (­)

 

Na2CO3 + H2SO4 ® Na2SO4 + H2O + CO2­

CO32- + 2H+ ® H2O + CO2­

 

3. Если образуется малодиссоциированное вещество (H2O)

 

Ca(OH)2 + 2HNO3 ® Ca(NO3)2 + 2H2O

H+ + OH- ® H2O

 

4. Если образуются комплексные соединения (малодиссоциированные комплексные ионы)

 

CuSO4 • 5H2O + 4NH3 ® [Cu(NH3)4]SO4 + 5H2O

Cu2+ + 4NH3 ® [Cu(NH3)4]2+

 

В тех случаях, когда нет ионов, которые могут связываться между собой с образованием осадка, газа, малодиссоциированных соединений (H2O) или комплексных ионов реакции обмена обратимы «.

 

 

ВОПРОС №32

Важнейшие классы неорганических соединений

К важнейшим классам неорганических соединений относятся оксиды, кислоты, основания и соли.

Оксиды — это сложные вещества, состоящие из двух видов химических элементов, одним из которых является кислород. Оксиды делятся на кислотные (в основном оксиды неметаллов) и основные (оксиды многих металлов). Кислотные оксиды реагируют с щелочами, в результате чего образуется соль. Соли также образуются в результате взаимодействия основного оксида с кислотой.

Основания — это сложные вещества, состоящие из атомов металла и гидроксогрупп (OH). Гидроксогруппа имеет валентность I, поэтому их количество в основании определяется валентностью металла. Например, NaOH — здесь одна гидроксогруппа, так как валентность натрия I. Ca(OH)2 — здесь валентность металла равна II, следовательно, к нему присоединяются две гидроксогруппы.

Основания, которые растворяются в воде, называются щелочами. Их можно получить при взаимодействии металла или его оксида с водой. Щелочи образуют наиболее активные металлы.

Все основания реагируют с кислотами с образованием соли и воды. Эта реакция называется реакцией нейтрализации.

Кислоты — это сложные вещества, состоящие из атомов водорода, которые могут замещаться на металл, и кислотных остатков. Кислотные остатки большинства кислот содержат атомы кислорода и другого какого-либо неметалла. Например, H2SO4, HNO3, H3PO4, H2CO3. Однако есть бескислородные кислоты — HCl, H2S, HBr.

Соли — это сложные вещества, состоящие из атомов металлов и кислотных остатков. Например, NaCl, CaCl2, K2SO4, CuSO4 и т. д. Соли можно рассматривать как результат замещения атомов водорода в кислоте на металл. Соли вступают в реакции обмена с другими солями, растворами кислот и щелочей. Более активный металл вытесняет из соли менее активный.

Из одних классов веществ в результате химических взаимодействий можно получать другие классы. Таким образом, говорят, что классы химических соединений генетически взаимосвязаны между собой.

В химии все многообразие неорганических веществ: принято разделять на две группы – простые и сложные. Простые вещества подразделяются на металлы и неметаллы. А сложные – на производные от простых, образованные путем их взаимодействия с кислородом, водой и между собой. Эту классификацию неорганических веществ в виде схемы изображают следующим образом:

Рис. 2.1. Классификация неорганических соединений.

Классификация реакций в неорганической химии. В неорганической химии различают реакции: 1)соединения, 2)разложения (и те и другие могут быть окислительно-восстановительными реакциями, а могут и не быть таковыми), 3)обмена, 4)замещения, которые всегда являются окислительно-восстановительными. Схемы реакций и примеры даны в таблице 2.1.

Таблица 2.1

Классификация реакций

Тип реакции Схема реакции Примеры реакций
Соединение А +В = АВ 1) Ca0 + Cl20= Ca2+Cl2- (ОВР) 2) CaO + CO2 = CaCO3
Разложение АВ = А + В 1) 2Ag2O = 4Ag +O2 (ОВР) 2) Cu(OH)2 = CuO + H2O
Обмен AB +CD=AD + CB BaCl2 + Na2SO4 = BaSO4↓ +2NaCl
Замещение AB + C = CB + A Zn + Pb(NO3)2 = Pb + Zn(NO3)2 (ОВР)

Рассмотрим получение и свойства наиболее важных классов неорганических соединений.

ОКСИДЫ (окислы) - сложные вещества, состоящие из двух элементов, одним из которых является кислород в степени окисления, равной -2. Общая формула любого оксида - ЭхОу-2. Различают солеобразующие (основные: Li2O, CaO, MgO ,FeO; амфотерные: ZnO, Al2O3, SnO2, Cr2O3, Fe2O3; кислотные: B2O3 , SO3 , CO2, P2O5 Mn2O7) и несолеобразующие: N2O, NO, CO оксиды. Элементы с переменной степенью окисления образуют несколько оксидов (MnO, MnO2, Mn2O7, NO, N2O3, NO2, N2O5). В высшем оксиде, как правило, элемент находится в степени окисления, равной номеру группы.

По современной международной номенклатуре названия оксидов составляют следующим образом: слово «оксид», далее русское название элемента в родительном падеже, степень окисления элемента (если она переменна). Например: FeO – оксид железа (II), P2O5 – оксид фосфора (V).

Основные оксиды это те, которым соответствуют гидроксиды – основания. Основными называют оксиды, взаимодействующие с кислотами с образованием соли и воды. Основные оксиды образуются только металлами в степени окисления +1,+2 (иногда +3), например: BaO, SrO, FeO, MnO, CrO, Li2O, Bi2O3, Ag2O.

Получение основных оксидов:

1) Окисление металлов при нагревании в атмосфере кислорода:

2Mg+O2=2MgO;

2Cu+O2=2CuO.

Свойства основных оксидов. Большинство основных оксидов представляет собой твердые кристаллические вещества ионного характера; в узлах кристаллической решетки расположены ионы металлов, достаточно прочно связанные с ионами O2-, поэтому оксиды типичных металлов обладают высокими температурами плавления и кипения.

Отметим одну характерную для оксидов особенность. Близость ионных радиусов многих ионов металлов приводит к тому, что в кристаллической решетке оксидов часть ионов одного металла может быть заменена на ионы другого металла. Это приводит к тому, что для оксидов часто не выполняется закон постоянства состава, и могут существовать смешанные оксиды переменного состава.

Кислотные оксиды - оксиды, которые при взаимодействии с основаниями образуют соль и воду. Кислотным оксидам соответствуют гидроксиды – кислоты. Кислотные оксиды – это оксиды неметаллов в различных степенях окисления, либо оксиды металлов в высокой степени окисления (+4 и выше). Примеры: SO2, SO3, Cl2O7, Mn2O7, CrO3.

Химическая связь в кислотных оксидах – ковалентная полярная. При обычных условиях кислотные оксиды неметаллов могут быть газообразными (CO2, SO2), жидкими (N2O3, Cl2O7), твердыми (P2O5, SiO2).

Получение кислотных оксидов.

1) Окисление неметаллов:

S+O2=SO2 ­

2) Окисление сульфидов:

2ZnS+3O2=2ZnO+2SO2 ­

Амфотерные оксиды взаимодействуют и с кислотами и со щелочами, проявляя свойства кислотных и основных оксидов. Им соответствуют амфотерные гидроксиды. Все они твердые вещества, нерастворимые в воде. Примеры амфотерных оксидов: ZnO, BeO, SnO, PbO, Al2O3, Cr2O3, Sb2O3, MnO2.

Свойства амфотерных оксидов.

Амфотерные оксиды реагируют с кислотами как основные:

Al2O3+6HCl=2AlCl3+3H2O,

а со щелочами – как кислотные. Состав продуктов реакции зависит от условий. При сплавлении:

ZnO+2NaOH=Na2ZnO2+H2O;

Цинкат натрия

В растворе щелочи образуется растворимая комплексная соль, содержащая гидроксокомплексный ион:

ZnO+2NaOH+H2O=Na2[Zn(OH)4]

Тетрагидроксоцинкат натрия

Несолеобразующие оксиды – это оксиды неметаллов, которым не соответствуют гидроксиды и соли. Примеры: CO, N2O, NO, SiO.

Оксиды широко распространены в природе. Так вода – самый распространенный оксид покрывает 71% поверхности планеты. Оксид кремния (IV) в виде 400 разновидностей кварца составляет 12% от массы земной коры. Оксид углерода (IV) (углекислый газ) содержится в атмосфере - 0,03% по объему, а также в природных водах. Важнейшие руды: гематит, магнетит, бурый железняк состоят из различных оксидов железа. Бокситы содержат оксид алюминия, и т.д.

ОСНОВАНИЯ – сложные вещества, в которых на атом металла приходится одна или несколько гидроксогрупп ОН-. Степень окисления атомов металла обычно +1, +2 (реже +3). Общая формула оснований Ме(ОН)х, где х – число гидроксогрупп – кислотность основания. (МеОН – однокислотное, Ме(ОН)2 – двухкислотное , Ме(ОН)3 – трехкислотное основание).

Названия основаниям дают следующим образом: «гидроксид», затем русское название металла в родительном падеже, а в скобках римскими цифрами – степень окисления, если она переменная. Например: KOH –гидроксид калия, Ni(OH)2 – гидроксид никеля(II).

При обычных условиях основания – твердые вещества, кроме гидроксида аммония – водного раствора аммиака NH4OH (NH4+ - ион аммония, входящий в состав солей аммония).

Классификация оснований. В зависимости от отношения к воде основания делятся на растворимые (щелочи) и нерастворимые. К растворимым основаниям - щелочам относятся только гидроксиды щелочных и щелочноземельных металлов (LiOH, NaOH, KOH, CsOH, RbOH, FrOH, Ca(OH)2, Sr(OH)2, Ba(OH)2, Ra(OH)2) а также водный раствор аммиака. Все остальные основания практически нерастворимы в воде.

С точки зрения теории электролитической диссоциации основания – электролиты, диссоциирующие в водном растворе с образованием в качестве анионов только гидроксид-ионов:

Ме(ОН)х Û Мех+ + хОН-.

Наличие в растворе ионов гидроксида определяют с помощью индикаторов: лакмуса (синий), фенолфталеина (малиновый), метилоранжа (желтый). Нерастворимые основания не меняют окраски индикаторов.

 

ВОПРОС №33

Классификации:

Все неорганические соединения делятся на две большие группы:

  • Простые вещества — состоят из атомов одного элемента;
  • Сложные вещества — состоят из атомов двух или более элементов.

Простые вещества по химическим свойствам делятся на:

  • металлы
  • неметаллы
  • амфотерные простые вещества
  • благородные газы

Сложные вещества по химическим свойствам делятся на:

  • оксиды:
  • осно́вные оксиды
  • кислотные оксиды
  • амфотерные оксиды
  • двойные оксиды
  • несолеобразующие оксиды
  • Гидроксиды;
  • основания
  • кислоты
  • амфотерные гидроксиды
  • соли:
  • средние соли
  • кислые соли
  • осно́вные соли
  • двойные и/или комплексные соли

бинарные соединения:

  • бескислородные кислоты
  • бескислородные соли
  • прочие бинарные соединения

Неорганические вещества, содержащие углерод:

Данные вещества традиционно относятся к области неорганической химии:

  • Карбонаты
  • Карбиды
  • Цианиды
  • Оксиды углерода
  • Цианаты
    • Неорганические тиоцианаты (роданиды)
    • Селеноцианаты
  • Карбонилы металлов

Металлы - группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Характерные свойства металлов

  • Металлический блеск
  • Хорошая электропроводность
  • Возможность лёгкой механической
  • Высокая плотность
  • Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
  • Большая теплопроводность

В реакциях чаще всего являются восстановителями окислительно-восстановительных реакциях в водных растворах.

Неметаллы — химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы.

Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов, и проявлению более высокой окислительной активности, чем у металлов.

Неметаллы имеют высокие значения сродства к электрону, большую электроотрицательность и высокий окислительно-восстановительный потенциал.

В периодической системе элементов Д.И.Менделеева металлы расположены в левом нижнем углу от диагонали B–At.

В металлах связь металлическая и металлическая кристаллическая решётка чем объясняются физические свойства металлов.

Для главных подгрупп: чем левее и ниже металл, тем большую химическую активность он проявляет. В периодах металлические свойства убывают, а в группах усиливаются (с увеличением порядкового номера), так как изменяется радиус атома.

Для металлов характерны общие физические свойства:

1) твёрдость; 2) электро и теплопровдность; 3) непрозрачность; 4) металлический блеск;

5) ковкость или пластичность (объяснение – металлическая кристаллическая решётка).

 

 

ВОПРОС №34  


Дата добавления: 2019-07-15; просмотров: 4746; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!