Твердые сплавы (металлокерамические) и минералокерамические материалы.



Предыдущая29303132333435363738394041424344Следующая

 


Основной частью всех металлокерамических твердых сплавов являются карбиды тугоплавких металлов – вольфрама и титана (Таблицка.7.). В качестве связующего материала в состав твердых сплавов обычно входит кобальт. Карбиды тугоплавких металлов вследствие их высокой твердости и износоустойчивости применяются в качестве основной части твердых сплавов.

Карбиды тугоплавких металлов не разлагаются при обыкновенных температурах ни кислотами, ни щелочами. Твердость карбидов таких металлов, как железо, кремний, вольфрам, титан, тантал, ниобий, ванадий приближается к твердости алмаза.

 

Таблица.7.Свойства карбидов титана и вольфрама, входящих в состав твердых сплавов

 

Показатели Карбид вольфрама Карбид титана
Температура плавления в ºС    
Твердость по минеральной шкале1 Более 9 8-9
Содержание углерода в % 5,8-6,1 19,0-20,0
Плотность 15,5 4,93
1 твердость алмаза принята за 10.    

 

 

Сложность изготовления и использования карбидов тугоплавких металлов привела к тому, что сами карбиды стали получать с помощью методов порошковой металлургии в виде очень тонкого и мелкого порошка, а изделия из них – путем прессования и последующего спекания при температуре плавления этих веществ. Так как спеченные карбиды оказались весьма хрупки, в состав твердых сплавов начали вводить вспомогательный материал – кобальт, который в процессе спекания расплавляется, растекается между зернами карбида и при охлаждении затвердевает, способствуя образованию прочного сплава.

Твердые спеченные сплавы состоят из смеси порошков карбида вольфрама (основа) – 66-97 % и кобальта 3-25 %. В зависимости от марки сплава в него добавляют такие компоненты, как карбид титана – 3-30 % и карбид тантала – 2-12 %. Предел прочности твердых сплавов при изгибе составляет 1176-2156 МПа (120-220 кгс/мм2), твердость – 79-92 HRА.

 

Вольфрамокобальтовые твердые сплавы (WC-Co) ВК.

Сплавы маркируются буквами «ВК» и цифрой, показывающей содержание кобальта (например, ВК3 – 3 % Со и 97 % WC). Увеличение содержания кобальта в сплавах группы ВК приводит к повышению прочности , но твердость и износостойкость при этом снижаются. Теплостойкость сплавов ВК составляет около 900º С,

По содержанию кобальта сплавы можно разделить на три группы:

· низкокобальтовые (3-8 % Со) - применяют для изготовления режущего инструмента

· среднекобальтовые (до 15 % Со) – применяют для изготовления бурового инструмента.

· высококобальтовые (до 25 % Со) – применяют для изготовления штампового инструмента.

Вольфрамокобальтовые твердые сплавы применяют при обработке хрупких материалов (материалов с элементной стружкой): чугуна, бронз, фарфора, стекла и др.

 

Титановольфрамокобальтовые твердые сплавы

(WC-Ti-Co) ТК.

Сплавы обозначаются комбинацией букв и цифр (например, Т30К4 – 30 % - TiC, 4 % Co, 66 % - WC)

Теплостойкость сплавов ТК составляет около 1000º С. Увеличение содержания кобальта приводит к повышению прочности с одновременным снижением твердости и теплостойкости.

Титановольфрамокобальтовые твердые сплавы применяют для обработки вязких материалов (со сливной стружкой): стали, латуни и др.

 

Титанотанталовольфрамокобальтовые твердые сплавы (WC-TiC-TaC-Co) ТТК.

Обозначение сплавов ТТК аналогично ТК. Цифра после второй буквы «Т» указывает на суммарное содержание карбидов титана и тантала (например, ТТ7К12 - 7 % TiC и TaC, 12 % Co, остальное 81 % WC).

Титанотанталовольфрамокобальтовые твердые сплавы применяют для черновой обработки материалов, когда сплавы ВК и ТК не пригодны (тяжелые условия резания с большими силовыми и температурными нагрузками).

Минералокерамические материалы.

Предыдущая30313233343536373839404142434445Следующая

 


Кроме твердых металлокерамических сплавов, в машиностроении применяют минералокерамические материалы. Получают их путем специальной обработки порошкообразных минералов (технической окиси алюминия Al2O3) с другими веществами и последующего обжига отформованных заготовок. По составу режущую керамику подразделяют на оксидную – Al2O3 (99 %) c добавками оксидов магния и циркония (белая); оксидно-карбидную Al2O3 (60-80 %) с оксидами и карбидами тугоплавких металлов (черная); оксидно-нитридная Al2O3 и TiN (кортинит); на основе нитрида кремния Si3N4 (силинит – Р).в отличии от твердых сплавов керамика не содержит металла – связки, в ее состав входят только твердые компоненты – оксиды, карбиды, нитриды. Поэтому керамика имеет весьма теплостойкость (1200-1400º С) и твердость (до 96 HRC), что позволяет выполнять резание со скоростями 400-600 м/мин. Отсутствие пластичной фазы в структуре керамики определяет высокую хрупкость и низкую прочность режущего инструмента.

Широкое применение получил минералокерамический материал – микролит ЦМ-332. он обладает высокими твердостью (HRC 90-95), тепло- и износостойкостью, по которым превосходит твердые сплавы.

Инструменты, оснащенные пластинками микролита, эффективно применяются при чистовой и получистовой обработке стали и чугуна, а также неметаллических материалов, цветных металлов и их сплавов.

 

 

Наплавочные сплавы и электроды.

Наплавочные материалы изготавливают в виде порошка, крупки (зернообразные сплавы – сталинит и др.) и в виде электродов – кусков электродной железной проволоки, обмазанных специальными составами, основу которых составляют различные ферросплавы (феррохром, ферромарганец и др. Таблица.8.)

 

Таблица.8.Основной состав наплавочных сплавов.

 

Название сплава Марка Основной состав Твердость наплавленного слоя HRC
Сталинит Улучшенный Хром, марганец, углерод, кремний, железо.  
Боридо-хромистая смесь КБХ Хром, бор, кремний, углерод, железо.  
Боридная смесь БХ Хром, бор, углерод.  
Литые карбиды вольфра-ма ТЗ Зерна карбида вольфрама в железной трубке  
То же З Зерна карбида вольфрама  

Сталинит применяют в основном для наплавки деталей, подвергающихся грубому износу, например щек камнедробилок, зубьев козырьков ковшей экскаваторов, буровых долотьев и т.п.

Боридно-хромистая смесь используется для наплавки новых и восстановления изношенных деталей строительных, дорожных и горнорудных машин.

Боридная смесь применяется для тех же целей, но в более ответственных деталях машин.

Стойкость инструментов и деталей, наплавленных литыми твердыми сплавами, повышается в 8-12 раз и более.

Древесные материалы.

Предыдущая31323334353637383940414243444546Следующая

 


Древесина– ярко выраженный анизотропный волокнистый материал. Механические характеристики у всех пород вдоль и поперек волокон значительно отличаются.

Древесина находит широкое применение в промышленности и быту. Она недефицитна, дешева, легко обрабатывается и сочетает в себе небольшую плотность с достаточно высокой плотностью.

Основная структурная единица древесины любых пород – клетка, в начальной стадии развития имеющая достаточно эластичную и легко проницаемую для воды и водных растворов оболочку. С возрастом прочность оболочки резко повышается, а проницаемость снижается вследствие превращения ее в высокомолекулярные органические соединения: целлюлозу, гемицеллюлозу и лигнин.

Различают клетки механические, проводящие (сосуды) и запасающие.

Породы деревьев, у которых крупные полости (сосуды) расположены в ранней зоне годичных слоев и образуют сплошное кольцо на поперечном срезе, относятся к кольцесосудистым (клен, ясень и др.), а породы, у которых сосуды расположены по годичному слою равномерно, - к рассеянно-сосудистым (береза, осина, ольха, граб и т.п.). Наибольший интерес для создания машиностроительных материалов представляет древесина рассеяно-сосудистых лиственных пород вследствие возможности равномерного распределения модификатора по всему объему при наполнении.

По химическому составу древесина различных пород практически одинакова и содержит: углерода – 50,9 %, кислорода - 43 %, водорода – 6,4 %, азота – 0,1 %.

Сосна обладает хорошими физико-механическими свойствами при относительно небольшой объемной массе, сравнительно малым количеством сучков и содержит много смолистых веществ, оказывающих консервирующее воздействие на деревянные детали. Сосна хорошо поддается обработке режущими инструментами.

Ель по физико-механическим свойствам и стойкости против гниения только немного уступает сосне, но имеет значительно больше сучков, затрудняющих механическую обработку еловой древесины. Условия переменной влажности способствуют загниванию древесины.

Лиственница - одна из самых твердых и прочных пород деревьев. Древесина лиственницы устойчива против воздействия воды и влажного воздуха.

Дубобладает высокой твердостью и прочностью, стойкостью против гниения и способностью к загибу. При низких температурах дубовая древесина сравнительно хрупка и склонна к растрескиванию.

Береза отличается хорошей упругостью, вязкостью и достаточной твердостью. В условиях переменной влажности березовые материалы, особенно тонкие, склонны к короблению. Береза является основным материалом для производства фанеры.

Физико-механические свойства древесины. Влажность – количество содержащейся в древесине воды, выраженное в процентах от массы абсолютно сухой древесины.

Воздушно-сухое состояние древесины, достигнутое при сушке на воздухе в течение летних месяцев, соответствует 15-18 %, комнатно-сухое – 8-9 %.

Испарение из древесины воды вызывает изменение ее размеров (усушку). Усушка вызывает растрескивание древесины обычно в радиальном направлении, а также ее коробление.

Механические свойства древесины неодинаковы в различных направлениях приложения деформирующей силы и зависят от породы деревьев, их возраста, наличия пороков, влажности и температуры. С увлажнением механическая прочность древесины снижается.

Наибольшей прочностью древесина обладает при растяжении вдоль волокон (110-130 МПа при влажности 15 % ), а наименьшей – при скалывании в том же направлении (7-10 МПа при той же влажности). Приведенные цифры относятся к древесине, не имеющей сучков, трещин и других пороков, а так же не пораженной заболеваниями, вызывающими появление трухлявости, изменения цвета и тд. Разрушение древесных материалов и изделий из них вследствие гниения и других поражений усиливается при высокой влажности и отсутствии вентиляции. К наиболее доступным средствам защиты древесины от заболеваний относятся пропитка антисептиками (растворами хлористого цинка, фтористого натрия, каменноугольное креозотовое масло и битумная паста), антипиринами (в качестве антипиринов используют красочные огнезащитные составы на основе жидкого стекла, содержащие пигменты и наполнители, соли различных металлов, разлагающиеся при повышенной температуре с образованием бескислородной газовой среды) и поддерживание в ней по возможности нормальной влажности.

При наполнении древесины синтетическими смолами с последующей их полимеризацией увеличиваются ее стойкость к гниению, сопротивление сжатию, твердость.

 

 

Эффективным приемом улучшения физико-механических характеристик древесины является ее механическое уплотнение с помощью различных устройств. Уплотненная древесина – лигностон («каменное дерево») – находит применение в машиностроении.

В промышленности широко используются как заготовки на основе натуральной древесины (лесоматериалы), так и древесные материалы на основе дисперсных и слоистых композиций.

К заготовкам на основе натуральной древесины можно отнести бревно, под которым понимают очищенную от сучьев часть ствола дерева диаметром по наименьшему сечению не менее 150 мм. При распиливании бревна вдоль его оси получают пластины, четвертины и пиломатериалы. К последним относятся брусья (ширина и толщина более 100 мм), бруски (с отношением ширины к толщине не более 2) и доски, у которых ширина более двойной толщины (Рис.68.).

 

Клееная фанера.

Клееной фанерой называется древесный слоистый материал, получаемый склеиванием по толщине трех и более слоев лущеного шпона при взаимно перпендикулярном расположении волокон древесины.

Лущеным шпоном называют тонкий слой древесины (от 0,1 до 3,5 мм), получаемый срезанием слоя с вращающегося обрезка ствола дерева (чурки).

Наружные слои шпона на фанере называют рубашками, а внутренние – серединками. Волокна в рубашках должны быть в одном направлении (ГОСТ 3916-69).

По водостойкости фанера подразделяется на фанеру повышенной водостойкости ФСФ, склеенную фенолформальдегидными клеями, средней водостойкости ФК, полученную склеиванием шпона карбамидными клеями, и ФБА, склеенную альбуминоказеиновыми клеями.

По качеству обработки рубашек различают фанеру шлифованную и нешлифованную.

Абсолютная влажность фанеры сортов ФСФ и ФК при поставке потребителям должна быть в пределах 5-10 %, а сорта ФБА – 6-15 %.

Предел прочности при скалывании по клеевому шву должен быть не менее: для березовой фанеры 12 кгс/см2, а для фанеры из других пород 6-10 кгс/см2.

 

Бакелизированная фанера.

Бакелизированная фанера (ГОСТ 11539-83) представляет собой клееную фанеру из березового шпона, склеенного фенолформальдегидными смолами, придающими материалу повышенную водостойкость. Бакелизированная фанера подразделяется на марки: ФБС и ФБС1, склеенные спирторастворимыми смолами; ФБВ и ФБВ1, склеенные водорастворимыми смолами; ФБС-А и ФБС1-А на спирторастворимых смолах, используемые для изготовления внутренних конструкций автомобиля.

Предел прочности бакелизированной фанеры разных марок должен быть не менее: при скалывании по клеевому шву – 15 кгс/см2, при растяжении вдоль волокон рубашки – 600-900 кгс/см2, а при статическом изгибе вдоль волокон рубашки – 800-1200 кгс/см2.

 

Древопластики.

На основе древесины создаются антифрикционные материалы, совмещающие функции конструкционного и смазочного материала. Капиллярно-пористое строение древесины определяет широкие возможности для придания ей свойств самосмазывания вследствие выделения в зону контакта смазочного материала из однократно или периодически заполняемых им пор и сосудов.

Опыт применения в качестве подшипниковых материалов уплотненной древесины (березы, ясеня) при смазке водой и жидкими маслами показывает, что она обеспечивает стабильный режим работы узла трения, более стойка к истиранию, чем чугун, бронза, текстолит, и нерастворима в обычных органических растворителях.

Величина коэффициента трения при внешней смазке моторными маслами примерно составляет 0,02-0,08, а в режиме самосмазки – 0,06-0,12. Допускаемые при этом скорости скольжения и нагрузки ограничиваются температурой трения, которая в среднем не должна превышать 80º С.

На основе древесины создаются и используются древесно-слоистые пластики (ДСП), древесно-прессовочные массы на основе крупнодисперсных частиц и пресс-порошки на основе мелкодисперсных частиц. Основное достоинство древопластиков и других композиционных материалов – достаточно высокая прочность и жесткость, приходящаяся на единицу массы.

Пластические массы.

Предыдущая32333435363738394041424344454647Следующая

 


В соответствии с ГОСТ 24888-81 пластическая масса (пластмасса) – материал, представляющий собой композицию полимера или олигомера с различными ингредиентами, находящуюся при формировании изделий в вязкотекучем или высокоэластичном состоянии, а при эксплуатации – в стеклообразном или кристаллическом состоянии.

Полимер – вещество, характеризующееся многократным повторением одного или более составных звеньев, соединенных между собой в количестве, достаточном для проявления комплекса свойств, которое остается практически неизменным при добавлении или удалении нескольких звеньев.

Олигомер – вещество, молекулы которого содержат составные звенья, соединенные повторяющимся образом друг с другом, комплекс свойств которого изменяется при добавлении или удалении одного или нескольких составных звеньев.

По структуре макромолекул полимеры бывают линейными, разветвленными и сшитыми (сетчатыми, трехмерными). Полимеры в зависимости от их строения и внешних условий могут находиться могут находиться в двух фазовых состояниях: аморфном и кристаллическом.

Аморфные полимеры в зависимости от температуры могут находиться в стеклообразном, высокоэластичном или вязкотекучем состояниях. При уменьшении температуры полимер проходит эти состояния в обратном порядке.

Исходными материалами для получения пластмасс служат дешевые природные вещества: продукты переработки каменного угля, нефти, природного газа и т.п. Основой пластических масс являются смолы – высокомолекулярные соединения органического происхождения. Пластмассы в зависимости от поведения смолы при нагреве делятся на термореактивные (реактопласты) и термопластичные (термопласты).

Термопластичные полимеры (линейные и разветвленные) при нагревании выше температуры стеклования размягчаются, приобретают высокую пластичность, а при охлаждении они вновь отвердевают, могут растворяться в соответствующих растворителях.

Термореактивныеполимеры в зависимости от числа поперечных сшивок в сетчатых структурах при нагревании не способны к размягчению или размягчаются незначительно, но в вязкотекучее состояние не переходят, в растворителях стойки или незначительно набухают.

В зависимости от применяемого наполнителя пластические массы разделяют на композиционные и слоистые. Композиционные в свою очередь делятся на порошкообразные и волокнистые.

Ассортимент пластмасс весьма разнообразен. Для подавляющего большинства пластмасс характерны следующие положительные качества:

1. малая плотность полимерных материалов (1,1-1,8 г/см3), что позволяет значительно уменьшить массу машин при изготовлении их деталей из пластмасс;

2. химическая стойкость – пластмассы не подвержены коррозии, даже в агрессивных средах;

3. электроизоляционные свойства, позволяющие применять пластмассы в качестве диэлектриков;

4. высокая удельная и абсолютная механическая прочность и возможность создания анизотропных материалов;

5. высокая технологичность;

6. наличие неограниченных ресурсов дешевого сырья;

7. низким коэффициентом трения – некоторые виды пластмасс, например текстолит, ДСП (древеснослоистые пластики), капрон, капролон, успешно заменяют бронзу и баббит в подшипниковых узлах машин;

8. высоким коэффициентом трения в сочетании с износостойкостью – фенопласты с асбестовым наполнителем, пресскомпозиции на основе каучуков и другие виды специальных пластмасс с успехом заменяют в конструкциях транспортных и прочих машин чугун и другие сорта дерева;

9. прозрачность – некоторые ненаполненные пластические массы, такие, как полиметилметакрилат (органическое стекло), полистирол и другие, способны пропускать лучи света в широком диапазоне волн, в том числе ультрафиолетовую часть спектра, значительно превосходя в этом отношении силикатные стекла; эти пластмассы широко применяют в оптической промышленности и машиностроении для изготовления прозрачных деталей – арматуры масляных и охлаждающих систем, линз смотровых отверстий и т.д.

Одновременно с указанными достоинствами пластмассы обладают следующими недостатками:

· низкой теплостойкостью – основные виды пластмасс могут удовлетворительно работать лишь в сравнительно небольшом интервале температур (от -60 до +200º С); для пластмасс на основе кремнийорганических полимеров и фторопластов верхний предел температур несколько выше: 300-400º С.

· низкой теплопроводностью, которая в 500-600 раз ниже теплопроводности металлов, что ограничивают их применение в узлах и деталях машин, где необходим быстрый отвод больших количеств теплоты;

· низкой твердостью (НВ 6-60);

· выраженным свойством ползучести, особенно ярко заметным у термопластов;

· малой жесткостью;

· старением – свойства пластмасс со временем ухудшаются под действием температуры, влажности, света, воды;

 

Компоненты, входящие в состав пластмасс.

Пластические массы по составу делят на простые и сложные. Сложные пластмассы помимо полимеров включают добавки: наполнители, пластификаторы, красители, отвердители, катализаторы и др.

Наполнители в пластмассы вводят в количестве 40-70 % для повышения твердости, прочности, жесткости, а также придания особых специфических свойств, например фрикционных или антифрикционных и др. Наполнители бывают органические и неорганические. Органическими наполнителями являются древесная мука, хлопковые очесы, целлюлоза, бумага, хлопчатобумажная ткань, древесный шпон. В качестве неорганических наполнителей используют асбест, графит, стекловолокно, стеклоткань, слюду, кварц. Листовые наполнители применяют для получения слоистых пластмасс: при применении хлопчатобумажной ткани – текстолит, стеклоткани – стеклотекстолит, бумаги – гетинакс, асбестовой ткани – асботекстолит. При применении древесного шпона вырабатывают древесные слоистые пластики. При изготовлении теплоизоляционных материалов в качестве наполнителя используют газы, получая газонаполненные полимерные материалы – пенопласты и поропласты.

Пластификаторы (стеарин, олеиновая кислота, дибутилфталат) повышают эластичность, пластичность, морозостойкость и облегчает обработку пластмасс. Их содержание колеблется в пределах 10-20 %.

Отвердители (амины) и катализаторы (перекисные соединения) в количестве нескольких процентов вводят в пластмассы для отверждения, т.е. создания межмолекулярных связей и встраивания молекул отвердителя в общую молекулярную сетку.

Красители (минеральные пигменты, спиртовые растворы органических красок) придают пластмассам определенную окраску. Состав компонентов, их сочетание и количественное соотношение позволяют изменить свойства пластмасс в широких пределах.

 

Термопластичные пластмассы.

Предыдущая33343536373839404142434445464748Следующая

 


Основу термопластичных пластмасс составляют полимеры с линейной и разветвленной структурой. Помимо основы они иногда содержат пластификаторы. Термопласты способны работать при температурах не выше 60-70º С, поскольку выше этих температур их физико-механические свойства резко снижаются. Некоторые теплостойкие пластмассы способны работать при температурах 150-200º С, а термостойкие полимеры с жесткими цепями и циклической структурой устойчивы до 400-600º С. Предел прочности термопластов изменяется в пределах 10-100 МПа. Длительное статическое нагружение термопластов вызывает появление вынуждено-пластической деформации и снижает их прочность.

 

Полиэтилен – полимер этилена с преобладающим строением повторяющегося составного звена .

Удачное сочетание в полиолефинах механической прочности, химической стойкости, хороших диэлектрических показателей, низкой газо- и влагопроницаемости, легкости переработки в изделия всеми известными способами, низкой стоимости и доступности сырья позволили полиолефинам занять первое место в мире по валовому выпуску пластмасс.

Техническое применение нашел полиэтилен двух видов: полиэтилен высокого давления (ПЭВД), получаемый полимеризацией этилена при давлении при давлении 1000-3500 кгс/см2, и полиэтилен низкого давления (ПЭНД), получаемый при давлении ниже 40 гкс/см2.

Полиэтилен применяют для изоляции защитных оболочек кабелей проводов, деталей высокочастотных установок и для изготовления коррозионностойких деталей – труб, прокладок, шлангов.

Полиэтилен подвержен старению. Для защиты от старения в полиэтилен вводят сажу 2-3 %, замедляющую процесс старения в 30 раз.

 

Полистирол – имеет структурную формулу

 

 

Полистирол - аморфный, твердый, жесткий, прозрачный полимер, имеющий преимущественно линейное строение. Полистирол получают полимеризацией стирола (Реакцией полимеризации называют процесс соединения большого числа однородных молекул низкомолекулярного вещества с образованием макромолекул нового вещества без выделения каких либо побочных продуктов реакции.).

Полистиролу присущи высокие диэлектрические свойства, удовлетворительная механическая прочность, невысокая рабочая температура (до 100º С), химическая стойкость в щелочах, минеральных и органических кислотах, бензине и керосине. При температуре выше 200º С разлагается, образуя стирол. Полистирол применяют для производства слабонагруженных деталей и высокочастотных изоляторов.

 

Фторопласт – 4 (политетрафторэтилен).

 

 

Фторопласт – 4 имеет аморфно-кристаллическую структуру. Температурный порог длительной эксплуатации фторопласта-4 ограничивается 250º С. Он относительно мягок, поскольку аморфная фаза находится в высокоэластическом состоянии. Фторопласт-4 отличается чрезвычайно высокой стойкостью к действию агрессивных сред: соляной, серной, плавиковой, азотной кислот, царской водки, пероксида водорода, щелочей.

Фторопласт-4 не горит и не смачивается водой и многими жидкостями.

Политетрафторэтилен не охрупчивается до -269º С. Он сохраняет гибкость при температуре ниже -80º С и имеет низкий коэффициент трения (0,04).

Фторопласт-4 применяется для изготовления мембран, труб, вентилей, насосов, уплотнительных прокладок, манжет, антифрикционных покрытий на металлах, а также электрорадиотехнических деталей.

 

Термореактивные пластмассы.

Термореактивные пластмассы производят на основе термореактивных смол: фенолформальдегидных, аминоальгидных, эпоксидных, полиимидных, кремнийорганических, ненасыщенных полиэфиров. Пластмассы на основе этих смол отличаются повышенной прочностью, не склонны к ползучести и способны работать при повышенных температурах. Смолы в пластмассах являются связкой и должны обладать высокой клеящей способностью, теплостойкостью, химической стойкостью в агрессивных средах, электроизоляционными свойствами, доступной технологией переработки, малой усадкой при затвердевании.

Фенолформальдегидная (бакелитовая) смола - продукт поликонденсации фенола Н5С6 – ОН с формальдегидом Н2СО.

Эпоксидные смолы содержат в молекулах эпоксидную группу:

Н2С - СН -

О

В чистом виде эпоксидные смолы – вязкие жидкости, способные длительное время сохранять свои свойства без изменений. Они растворяются во многих органических растворителях (ацетон, толуол и др.) и нерастворимы в воде, бензине. В присутствии отвердителей ( амины, их производные, ангидриды карбоновых смол и др.) эпоксидные смолы быстро затвердевают, приобретая сетчато-пространственное строение. Отверждение смолы полимеризационный процесс, без выделения воды или низкомолекулярных веществ, и развивается равномерно в весьма толстом слое.

Кремнийорганические смолы (силиконы) содержат в составе элементарного звена макромолекулы атомов углерода и кремния. По строению макромолекулы могут быть линейными, разветвленными и пространственными.

Кремнийорганические полимеры широко используются в качестве связующих в производстве стеклотекстолитов, а также в производстве термостойких резин (каучук СКТ), лакокрасочных покрытий, клеев, герметиков

Глифталевые смолы (алкидные) получают поликонденсацией трехатомного спирта – глицерина НО - СН2 - СНОН – СН2 – ОН и фталиевого ангидрида

 

СО

Н4С6 О

СО

Глифталевые смолы имеют повышенную теплостойкость до 150º С. Они отличаются от бакелитовых смол повышенной эластичностью, стойкостью к старению при повышенных температурах и адгезией. Глифталевые смолы растворяются в ацетоне и спирте, стойки к действию воды и кислых сред и обнаруживают хорошие диэлектрические свойства. На основе глифталевых смол получают клеи и лаки.

 

Газонаполненные пластмассы.

Газонаполненные пластмассы представляют собой гетерогенные системы, состоящие из твердой или упругоэластичной фазы – связующего, газообразной фазы – наполнителя.

В зависимости от макроструктуры газонаполненные пластмассы делятся на пенопласты и поропласты. В пенопластах полимерная основа образует систему замкнутых изолированных ячеек, заполненных газом. В поропластах полимерная основа образует систему ячеек с частично разрушенными перегородками, сообщающихся между собой. Поропласты (губчатые материалы) эластичны. Получают поропласты, вводя в состав композиций вещества, способные выкипать при нагревании или вымываться водой, что и приводит к образованию пор. Поропласты выпускают в виде блоков с пленкой на поверхности. Они отличаются высокой способностью поглощать звуки (70-80 %)на технических частотах.

Пенопласты – жесткие материалы, имеют малую объемную массу от 20 до 300 кг/м3. замкнутая ячеистая структура придает им хорошую плавучесть и высокие теплоизоляционные свойства.


Дата добавления: 2019-02-26; просмотров: 1187; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!