Новые лекарства от старых раков



 

 

В истории Патрокла

Никто не выжил — даже Ахилл,

Почти что бог.

Патрокл был схож с ним;

Они один доспех носили.

 

Луиза Глюк

 

Идеальной терапии еще не разработано. Мы верим, что она не будет включать в себя ядовитые цитотоксические препараты, и потому поддерживаем фундаментальные исследования, направленные на более глубокое понимание биологии опухолей. Но… покамест приходится делать все возможное теми средствами, что у нас есть.

Брюс Чабнер в письме к Роуз Кушнер

 

По легенде, Ахилла обмакнули в реку Стикс, держа за пятку. Тело его, омытое черными водами, обрело неуязвимость пред любым, даже самым смертоносным оружием — лишь пяточное сухожилие осталось без защиты. Простая стрела, направленная в эту уязвимую пяту, прервала жизнь Ахилла в битве под стенами Трои.

До 1980 года весь арсенал средств лечебной онкологии строился вокруг двух основных уязвимых мест раковых клеток. Прежде чем распространиться по всему телу, рак предстает в образе локального заболевания — и в этом его первое слабое место. На эту слабость нацелены хирургия и облучение, пытающиеся искоренить недуг либо физическим иссечением местной опухоли до того, как рак успеет дать метастазы, либо выжиганием раковых клеток узконаправленными лучами энергии при помощи рентгена.

Вторым уязвимым местом рака является высокая скорость деления клеток[39]. Большинство препаратов химиотерапии, открытых до 1980 года, направлены именно на эту вторую слабость. Антифолаты — например, фарберовский аметоптерин — нарушают метаболизм фолиевой кислоты, тем самым лишая клетку жизненно важного для деления вещества. Азотистый иприт и цисплатин химически взаимодействуют с ДНК, а клетка с поврежденной ДНК не может дуплицировать гены, а потому не в состоянии делиться. Винкристин — токсин, добываемый из барвинка, — атакует способность клетки построить молекулярный скелет, необходимый любой клетке для деления.

Однако в эти две традиционные ахиллесовы пяты рака — локальный рост и быстрое деление клеток — можно целиться лишь до известного предела. Хирургия и радиация не в силах помочь, когда раковые клетки распространились за границы области, которую можно удалить физическим путем или выжечь радиацией. При этом, как выяснили в 1950-е годы сторонники радикальной хирургии, операции большего масштаба не помогают вылечить большее количество больных.

Стратегии, направленные на борьбу с клеточным делением, тоже упираются в биологический потолок: ведь нормальным клеткам необходимо делиться. Быть может, активный рост и является отличительным признаком рака, но он же служит и отличительным признаком жизни. Яды вроде винкристина или цисплатина, останавливающие деление клеток, рано или поздно атакуют и нормальные клетки, поэтому те ткани, что размножаются в организме быстрее всего, первыми расплачиваются за химиотерапию: волосы выпадают, кровь хиреет, выстилка кожи и внутренностей отшелушивается. При этом, как обнаружили в 1980-е годы сторонники радикальной химиотерапии, увеличение дозы яда лишь сильнее отравляет организм, не увеличивая числа вылеченных пациентов.

Чтобы атаковать раковые клетки при помощи новейших стратегий, ученым и врачам требовалось найти у раковой клетки новые слабые места. Открытия молекулярной биологии 1980-х годов предлагали куда более сложный и богатый нюансами взгляд на эти уязвимые стороны. Возникли три новых подхода, представляющих три новые ахиллесовы пяты рака.

Первое: раковые клетки бесконтрольно размножаются благодаря накоплению мутаций в ДНК. Мутации активируют внутренние протоонкогены и инактивируют гены-супрессоры опухолей, тем самым выводя из строя педали газа и педали тормоза, работающие во время нормального клеточного деления. Новый терапевтический подход, более избирательно атакующий раковые клетки, состоял в том, чтобы целиться именно в такие гиперактивные гены, не трогая их нормальных предшественников.

Второе: протоонкогены и гены-супрессоры опухолей, как правило, расположены на ключевых перекрестках внутриклеточных сигнальных путей. Раковые клетки делятся и растут в результате воздействия гиперактивных или неактивных сигналов в критических точках. В нормальных клетках эти сигнальные пути тоже существуют, но строго регулируются. Вторым потенциально слабым местом раковой клетки является ее зависимость от таких постоянно активированных сигнальных путей.

Третье: безжалостный цикл мутации, отбора и выживания создает раковую клетку, которая, помимо бесконтрольного роста, приобрела и еще несколько дополнительных свойств. К ним относится способность игнорировать сигналы к клеточной гибели, способность метастазировать по всему организму и стимулировать рост кровеносных сосудов. Эти «отличительные признаки рака» также не изобретены раковыми клетками, а появляются вследствие нарушения сходных процессов, заложенных в нормальную физиологию организма. Приобретенная зависимость раковых клеток от всех этих процессов и является третьим потенциально слабым местом рака.

Таким образом, основная проблема новейшей онкологической медицины состояла в том, чтобы среди безбрежного моря сходных черт нормальной и раковой клетки найти тонкие различия в генах, сигнальных путях и приобретенных свойствах — и нацелить отравленную стрелу именно в эту новую пятку.

 

Но одно дело — выявить ахиллесову пяту, а совсем другое — придумать оружие, которым ее можно поразить. До самого конца 1980-х годов ни одно лекарство не в состоянии было обратить вспять активацию онкогенов или инактивацию генов-супрессоров опухолей. Даже тамоксифен, самый специфичный антираковый препарат, известный на тот день, всего лишь атакует зависимость определенных типов клеток рака молочной железы от эстрогена, а не инактивирует непосредственно какой-нибудь онкоген или включенный онкогеном сигнальный путь. Неудивительно, что при таком положении дел открытие в 1986 году первого лекарства, специфически нацеленного именно на онкоген, всколыхнуло всю онкологию. Лекарство было обнаружено по счастливой случайности, однако самого факта, что такая молекула существует, хватило для запуска мощнейшей, растянувшейся на десятилетие охоты за препаратами.

Болезнью, стоявшей на ключевом перекрестке онкологии, оказалась еще одна редкая разновидность лейкемии под названием острая промиелоцитарная лейкемия — ОПЛ. Впервые описанная в 1950-х годах как отдельная форма лейкемии у взрослых, эта разновидность рака отличается четкими характеристиками: при ней клетки не только быстро делятся, но еще и застыли в недозрелом развитии. Нормальные лейкоциты, развиваясь в костном мозге, проходят серию стадий созревания, пока не превратятся в полностью функциональные зрелые клетки. Одна из таких промежуточных клеток называется промиелоцитом и представляет собой подростковую форму, практически готовую превратиться в функционально зрелую взрослую клетку. ОПЛ характеризуется злокачественной пролиферацией именно незрелых промиелоцитов. В норме промиелоциты содержат в себе токсические энзимы и гранулы — взрослые клетки выпускают их для уничтожения вирусов, бактерий и паразитов. При промиелоцитарной лейкемии кровь переполнена этими промиелоцитами, несущими свой ядовитый груз. Своенравные, прихотливые, темпераментные, клетки ОПЛ способны в любой момент выбросить ядовитые гранулы в кровь — что приводит к обширным кровотечениям или к септической реакции в организме. Таким образом, патологическое размножение клеток обретает при ОПЛ особенно опасный характер. При большинстве раков мутировавшие клетки отказываются прекратить размножение. При ОПЛ они еще и отказываются взрослеть.

С начала 1970-х годов эта остановка в развитии клеток ОПЛ подталкивала ученых на поиски препарата, который заставил бы эти клетки созревать. На ОПЛ испробовали десятки различных химических веществ, но только ретиноидная кислота — окисленная форма витамина А — дала заметные результаты. Вся беда, однако, состояла в том, что ретиноидная кислота оказалась крайне ненадежным средством. Одна ее порция стимулировала созревание клеток ОПЛ, а вторая не оказывала никакого воздействия. Разочарованные мимолетными проблесками результата, химики и биологи, еще недавно пылающие энтузиазмом, отказались от попыток стимулировать созревание клеток ретиноидной кислотой.

Летом 1985 года из Китая во Францию приехала группа исследователей, занимавшихся лейкемией, чтобы встретиться с Лораном Дего, гематологом парижской больницы Сен-Луи, давно питающим интерес к ОПЛ. Китайская группа, возглавляемая Ван Чжэньи, также лечила пациентов с ОПЛ в больнице Жуйцзинь, крупном городском клиническом центре Шанхая. И Ван, и Дего испробовали стандартные химиотерапевтические средства — лекарства, нацеленные на быстроделящиеся клетки, — с целью добиться у своих пациентов ремиссии, но получили самые нерадостные результаты. Ван и Дего в один голос твердили, что им нужна новая стратегия для борьбы с этим капризным смертельным недугом. Оба все время мысленно возвращались к незрелости клеток ОПЛ и к поискам препарата, который бы заставлял их созревать.

Ван и Дего знали, что ретиноидная кислота существует в виде двух близких молекулярных форм, так называемой цис-ретиноидной и транс-ретиноидной кислоты. По составу обе эти формы одинаковы, однако различаются молекулярной структурой и совершенно по-разному ведут себя в молекулярных реакциях. Цис-ретиноидная кислота и транс-ретиноидная кислота состоят из одних и тех же атомов, выстроенных немного по-разному. Из этих двух форм наиболее интенсивно исследовали цис-ретиноидную кислоту, и именно она давала нестойкий и переменчивый результат. Однако Ван и Дего гадали, не окажется ли транс-ретиноидная кислота настоящим фактором созревания. Быть может, непредсказуемый ответ в старых экспериментах объяснялся тем, что в каждой порции ретиноидной кислоты присутствовало малое и всегда разное количество транс-ретиноидной формы?

Ван, окончивший французский иезуитский колледж в Шанхае, говорил по-французски певуче, с сильным акцентом. Опрокинув все лингвистические и географические барьеры, два гематолога наметили план международного сотрудничества. Ван знал рядом с Шанхаем фармацевтическую фабрику, которая могла выпускать чистую транс-ретиноидную кислоту без примеси цис-ретиноидной. Он собирался испытать лекарство на пациентах с ОПЛ в больнице Жуйцзинь. Группа Дего в Париже должна была присоединиться к ним после первоначальных испытаний в Китае и проверить стратегию на французских пациентах с ОПЛ.

В 1986 году Ван начал испытания с двадцатью четырьмя пациентами. У двадцати трех из них наблюдался поразительный результат. Лейкемические промиелоциты в крови больных претерпели стремительное созревание, превратившись в лейкоциты. «Ядро увеличивается, — писал Ван, — в цитоплазме наблюдается меньше первичных гранул. На четвертый день культивирования клетки образуют миелоциты, содержащие типичные, или вторичные, гранулы… показатель развития полностью зрелых миелоцитов».

Затем события приняли неожиданный оборот: достигнув зрелости, раковые клетки принялись умирать. У некоторых пациентов дифференциация и смерть развивались так бурно, что костный мозг сперва переполнялся созревающими миелоцитами, а затем на протяжении нескольких недель медленно пустел по мере того, как раковые клетки постепенно созревали и запускали программу ускоренной клеточной гибели. Резкое созревание раковых клеток приводило к краткосрочным нарушениям метаболизма, которые удавалось регулировать медикаментозным путем, но, помимо этого, единственным побочным эффектом транс-ретиноидной кислоты было пересыхание во рту да изредка сыпь. Ремиссии, полученные при помощи ретиноидной кислоты, длились недели, а часто и месяцы.

Как правило, через три-четыре месяца после лечения ретиноидной кислотой острая промиелоцитарная лейкемия все же возвращалась. Тогда парижская и шанхайская группы попробовали сочетание стандартных химиотерапевтических препаратов и ретиноидной кислоты — коктейль из старого и нового лекарства, — и ремиссии продлевались еще на несколько месяцев. У двух третей пациентов ремиссии начали растягиваться на год, потом на пять лет. В 1993 году Ван и Дего пришли к выводу, что семьдесят пять процентов пациентов, проходивших лечение сочетанием транс-ретиноидной кислоты и стандартной химиотерапии, достигли пожизненной ремиссии — процент, неслыханный в истории лечения ОПЛ.

Биологам потребовалось еще десять лет для объяснения поразительных шанхайских результатов на молекулярном уровне. Путь к разгадке указала элегантная работа Джанет Роули, цитолога из Чикаго. В 1984 году Роули определила уникальную транслокацию в хромосомах клеток ОПЛ — фрагмент гена из пятнадцатой хромосомы сливался с фрагментом гена из семнадцатой. В результате получался активированный «химерный» онкоген, вызывающий активное деление промиелоцитов и блокирующий их созревание, что и создавало симптоматику ОПЛ.

Через четыре года после начала клинических испытаний Вана в Шанхае, в 1990 году, независимые группы исследователей из Франции, Италии и США сумели выделить виновный онкоген. Они обнаружили, что он кодирует белок, который плотно связывается с транс-ретиноидной кислотой. Это связывание немедленно гасит подаваемые онкогеном сигналы в клетках ОПЛ, что и объясняет стремительные и стойкие ремиссии, достигнутые в Шанхае.

 

Шанхайское открытие потрясало воображение: транс-ретиноидная кислота являла собой воплощение давней мечты молекулярной онкологии — лекарство, воздействующее на конкретный онкоген. Однако эта мечта ожила задом-наперед: Ван и Дего сперва наткнулись на транс-ретиноидную кислоту в результате вдохновенной догадки, а уже потом обнаружили, что молекула воздействует непосредственно на онкоген.

Возможно ли проделать этот путь в другую сторону — начать с онкогена и прийти к лекарству? Роберт Вайнберг в своей бостонской лаборатории уже отправился в это странствие, хотя сам и не подозревал об этом.

В начале 1980-х годов лаборатория Вайнберга усовершенствовала методику выделения вызывающих рак генов непосредственно из раковой клетки. При помощи этой методики ученым удалось выделить десятки новых онкогенов. В 1982 году бомбейский исследователь по имени Лакшми Чаран Падхи, занимавшийся в лаборатории Вайнберга последиссертационной научной работой, сообщил, что выделил еще один онкоген из крысиной опухоли под названием нейробластома. Вайнберг окрестил ген neu в честь типа рака, из которого этот ген был получен.

Neu добавили в растущий список онкогенов, однако он выделялся из общего ряда. Все клетки окружены тонкой мембраной, состоящей из липидов и белков. Эта мембрана, точно маслянистая пленка, препятствует проникновению в клетку многих лекарств. Продукты большинства обнаруженных до сих пор онкогенов — таких как ras и myc — находятся внутри клетки (так, белок ras крепится к клеточной мембране, но изнутри), что делает их недоступными для лекарств, которые не в силах проникнуть через мембрану. Но продукт гена neu относился к иному типу белков. Он не прятался в глубине клетки, а проходил через мембрану, причем так, что большой фрагмент его торчал наружу, доступный любому лекарству.

У Лакшми Чарана Падхи как раз имелось «лекарство», которое можно было бы проверить. В 1981 году, выделяя ген neu , он создал антитела, связывающие новый белок neu.  Антитела — это молекулы, разработанные так, чтобы связываться с другими молекулами. Порой это связывание способно заблокировать и вывести из строя связанный белок. Однако антитела не способны проникать через клеточную мембрану, а могут связываться лишь с торчащими наружу белками. Поэтому neu с его-то заманчиво торчащей из мембраны длинной молекулярной «ногой» являл собой идеальную мишень. Падхи потребовалось бы всего полдня на то, чтобы добавить антитела к neu к клеткам нейробластомы и проверить, не произойдет ли связывания. «За ночь эксперимент можно было провести! — впоследствии сокрушался Вайнберг. — Я готов сам себя выпороть. Будь я внимательнее и сосредоточеннее, не зациклись я на одной-единственной идее, которую вынашивал в то время, я бы сообразил!»

Несмотря на целый шлейф соблазнительных наводок, Падхи и Вайнберг так и не додумались провести этот эксперимент. Шли день за днем. Погруженный в себя, нелюдимый Падхи сновал по лаборатории в мятом халате, держа свои эксперименты в тайне и не рассказывая о них коллегам. Его открытие опубликовали в престижном научном журнале, однако мало кто из ученых обратил внимание на то, что Падхи, вполне возможно, наткнулся на потенциальное лекарство от рака — сведения об антителах к neu были закопаны в путаной схеме посредине статьи. Даже Вайнберг, захваченный головокружительной погоней за новыми онкогенами и поглощенный фундаментальной биологией раковой клетки, попросту забыл про эксперимент с neu [40].

Вайнберг получил онкоген и препарат, потенциально блокирующий действие этого онкогена, однако эта пара так и не встретилась — ни в клетках, ни в телах людей. В активно делящихся в лабораторных инкубаторах клетках нейробластомы ген neu неистовствовал, как и прежде, — однонаправленный, маньяческий и на первый взгляд непобедимый, и его молекулярная «нога» покачивалась над поверхностью плазматической мембраны, выставленная наружу и уязвимая, как знаменитая ахиллесова пята.

 

Город из нитей

 

Жители Эрсилии, определяя отношения, управляющие жизнью города, протягивают меж углами зданий нити — белые, черные, серые, черно-белые, в зависимости от того, обозначают ли они родство, обмен, власть или представительство. Когда нитей делается столько, что меж ними уже не пробраться, жители уходят, разобрав свои дома, и остаются только нити и держатели для них.

Итало Кальвино. Невидимые города [41]

 

Вайнберг и думать забыл о тех возможностях, что открывал neu для медицины, но онкогены по сути своей таковы, что о них не очень-то легко позабыть. В книге «Незримые города» Итало Кальвино описывает выдуманный город, в котором все отношения между жителями того или иного дома обозначены разноцветными бечевками, натянутыми между этими домами. По мере того как город растет и развивается, лабиринт нитей становится все гуще, так что отдельные дома уже и не разглядеть, город превращается в паутину переплетенных разноцветных нитей.

Если бы нарисовать схему взаимоотношений между генами нормальных клеток человека, то протоонкогены и гены-супрессоры опухолей, такие как ras, myc, neu и Rb,  оказались бы в центральных узлах такого клеточного города, а от них во все стороны тянулись бы пучки разноцветных нитей. Протоонкогены и гены-супрессоры опухолей — это молекулярные стержни клетки, привратники ее деления, а процесс деления занимает в нашей физиологии настолько центральное место, что гены и сигнальные пути, координирующие этот процесс, пересекаются практически с каждым аспектом нашей биологии. В лаборатории это называют правилом шести шагов до рака: задай любой биологический вопрос, пусть даже о чем-то совершенно другом — например, отчего замирает сердце, или почему червяки стареют, или как птицы выучивают свои песни, — и шести генетических ступеней не пройдет, как закончишь связью с протоонкогеном или геном-супрессором опухолей.

Неудивительно, что едва лаборатория Вайнберга забыла о гене neu, как он вынырнул в другом месте. Летом 1984 года группа исследователей, сотрудничавших с Вайнбергом, обнаружила человеческий гомолог neu. Отметив его сходство с другим обнаруженным недавно геном, модулирующим рост — геном человеческого рецептора эпидермального фактора роста (HER), — исследователи назвали новый ген Her-2.

Как ген ни назови, он остается тем же геном. И все же в истории neu произошел неуловимый, но принципиальный сдвиг. Ген Вайнберга открыли в академической лаборатории. Вайнберг уделял основное внимание исследованию молекулярных механизмов действия онкогена neu. А вот Her-2 , напротив, получили на кампусе фармацевтической компании «Генинтех». Место получения — а соответственно и цели исследования — кардинально изменило судьбу этого гена. Для Вайнберга neu олицетворял путь к пониманию фундаментальных основ биологии нейробластомы. Для «Генинтех» Her-2 олицетворял путь к разработке нового лекарства.

 

Расположенная на южной окраине Сан-Франциско, между могучими лабораториями Стэнфорда, Калифорнийского университета и Университета Беркли и быстро развивающимися технологическими компаниями Кремниевой долины, фирма «Генинтех» — сокращение от «генно-инженерных технологий» — была порождена идеей, исполненной глубокого символизма. В конце 1970-х годов исследователи из Стэнфорда и Калифорнийского университета изобрели методику под названием «рекомбинантная ДНК». Эта методика позволяет совершать невообразимые прежде манипуляции генами, например, переносить их от организма к организму, внедрить бактерии ген коровы или синтезировать людской белок в клетках собаки; расщеплять гены на фрагменты, образуя новые гены; создавать новые, не существующие в природе белки. Компания «Генинтех» задумывалась для того, чтобы поднять эту технологию на фармацевтический уровень создания современных лекарств. Основанная в 1976 году, компания выкупила у Калифорнийского университета лицензию на методику рекомбинантной ДНК и начала охоту за самыми современными лекарствами.

В простых концептуальных терминах «лекарство» — это любое вещество, способное оказывать воздействие на физиологию животных. Лекарства могут быть простыми молекулами (например, вода и соль при определенных условиях служат сильнодействующими фармакологическими агентами) или сложными многосоставными веществами — природными соединениями (пенициллин) или искусственно синтезированными (аметоптерин). Одними из самых сложных лекарств в медицине являются белки — молекулы, синтезированные клетками и способные оказывать разнообразное воздействие на физиологию человека. Инсулин, вырабатываемый клетками поджелудочной железы, регулирует уровень сахара в крови и используется для контроля диабета. Гормон роста, производимый клетками гипофиза, стимулирует рост, ускоряя метаболизм в клетках мышц и костей.

До создания компании «Генинтех» производство лекарственных белков, при всей их признанной пользе, было делом чрезвычайно сложным. К примеру, внутренности коров и свиней перемалывали в жидкую кашицу, из которой потом экстрагировали нужный белок, получая один килограмм инсулина из шестнадцати тонн перемолотой поджелудочной железы. Гормон роста, которым лечили карликовость, получали из гипофизов, вырезанных у трупов. На получение лекарств для свертывания крови, которыми лечили кровотечения, шли тысячи литров человеческой крови.

Технологии, основанные на получении рекомбинантной ДНК, позволили «Генинтеху» синтезировать человеческие белки de novo : не экстрагировать их из органов животных и человека, а «встраивать» человеческий ген, например, в бактерию и использовать бактериальные клетки как биореактор для производства огромных количеств этого белка. Это была революционная технология. В 1982 году компания «Генинтех» выпустила первый «рекомбинантный» человеческий инсулин; в 1984 году началось производство факторов свертывания крови для борьбы с кровотечениями у больных гемофилией; в 1985-м создали рекомбинантную версию гормона роста человека, — и все при помощи встраивания человеческих генов в бактериальные клетки или клетки животных.

Правда, к концу 1980-х годов, после столь поразительного старта, компания исчерпала список существующих лекарств массового производства, для которых требовалась эта технология. В конце концов первые победы стали результатом процесса, а не продукта: компания открыла радикально новый способ производить старые лекарства. И вот теперь ученые «Генинтеха» взялись за изобретение совершенно новых лекарств: им требовалось сменить стратегию, найти для своих лекарств новые мишени — клеточные белки, которые играют критическую роль в физиологии того или иного заболевания и, в свою очередь, могут включаться или выключаться белками, производимыми при помощи рекомбинантной ДНК.

В рамках этой программы «поиска цели» немецкий ученый Аксель Ульрих, сотрудник «Генинтеха», заново открыл ген Вайнберга — Her-2/neu , онкоген, торчащий из мембраны клетки[42]. Обнаружив этот ген, компания «Генинтех» не знала, что с ним делать. Лекарства, успешно синтезируемые компанией, были разработаны для лечения болезней, при которых нужный белок или сигнал в организме отсутствовал или его было слишком мало — инсулин при диабете, факторы свертывания при гемофилии, гормон роста при карликовости. С онкогеном же картина была ровно противоположная — не отсутствие нужного сигнала, а, напротив, его переизбыток. В «Генинтехе» умели производить недостающие белки в бактериальных клетках, но теперь предстояло научиться инактивировать гиперактивный белок в клетках человека.

 

Летом 1986 года, пока в «Генинтехе» размышляли, как бы инактивировать онкогены, Ульрих провел семинар в Калифорнийском университете Лос-Анджелеса. Бурлящий энергией оратор, яркий и колоритный, облаченный в строгий темный костюм, он обрушил на слушателей невероятную историю выделения Her-2 и случайного сходства этого открытия с открытием Вайнберга. Однако слушатели не поняли главного. «Генинтех» — компания по производству лекарств. При чем же тут лекарства?

В тот день на семинаре Ульриха присутствовал и Дэннис Сламон, онколог из Калифорнийского университета Лос-Анджелеса. Он родился в семье шахтера из Аппалачей, окончил медицинскую школу Чикагского университета, а в Лос-Анджелесе проходил практику по онкологии. Он воплощал в себе удивительное сочетание мягкости и упорства — недаром один журналист метко окрестил его «бархатным молотом». В самом начале своей академической карьеры он проникся, как сам говорил, «смертельной решимостью» научиться лечить рак, однако до сих пор из этой решимости толком ничего не вышло. В Чикаго Сламон провел ряд изящных исследований вируса HTLV-1 — одиночного ретровируса, в редких случаях способного вызывать лейкемию человека. Сламон знал, что, убивая вирус, с раком не покончишь. Ему требовался метод убивать онкогены.

Выслушав рассказ Ульриха о Her-2, Сламон провел быструю интуитивную связь между всем происходящим. Ульрих нашел онкоген, «Генинтех» искал лекарство — но им не хватало промежуточного звена. От лекарства без болезни мало проку. Чтобы превратить его в настоящее лекарство от рака, требовалось найти рак, при котором гиперактивен именно ген Her-2 У Сламона имелся набор образцов раковых клеток различных типов рака, которые можно было проверить на гиперактивность Her-2 Такой же запасливый скопидом, как и Тадеуш Дрыя, Сламон собирал и замораживал образцы раковых тканей, взятые от пациентов, оперируемых при Калифорнийском университете. Возникла возможность сотрудничества: если Ульрих пришлет пробы ДНК к Her-2, то Сламон испытает их на своей коллекции тканей для выявления гиперактивности по этому гену, тем самым преодолев разрыв между онкогеном и реальным раком у людей.

Ульрих согласился и в 1986 году прислал Сламону пробу Her-2 Через несколько месяцев Сламон сообщил Ульриху, что нашел определенные закономерности, хотя еще не может их толком понять. Раковые клетки, у которых развивается постоянная зависимость от активности какого-то гена, способны амплифицировать этот ген, то есть создавать в хромосоме его множественные копии. Этот феномен, напоминающий поведение наркомана, который подпитывает свою зависимость увеличением дозы, называется амплификацией онкогена. Сламон обнаружил, что Her-2 многократно амплифицирован в тканях рака молочной железы, однако не всегда. На основании окрашивания тканей раки молочной железы можно было поделить на два типа — те, где происходит амплификация Her-2 , и те, где ее не происходит, Her-2- положительные и Her-2 -отрицательные.

Озадаченный таким разделением, Сламон поручил своему ассистенту проверить, отличалось ли поведение Her-2- положительных опухолей от Her-2 -отрицательных. Поиски принесли еще одну удивительную закономерность: опухоли молочной железы с амплификацией гена Ульриха, как правило, оказывались более агрессивными, метастазирующими и смертоносными. То есть амплификация Her-2 свидетельствовала о гораздо худшем прогнозе.

Данные Сламона запустили цепную реакцию в лаборатории Ульриха в «Генинтехе». Связь между Her-2 и определенной разновидностью рака — агрессивного рака молочной железы — подталкивала к проведению важного эксперимента. Что произойдет, если каким-то образом заглушить активность Her-2 ? Неужели рак «зависим» от амплификации этого гена? А если да, то удастся ли, заглушив при помощи связывающего Her-2 препарата сигнал зависимости, остановить рост раковых клеток? Ульрих кружил вокруг той самой идеи «эксперимента на полдня», о котором напрочь забыли Вайнберг и Падхи.

Ульрих знал, где искать препарат, отключающий действие Her-2. К середине 1980-х годов компания «Генинтех» превратилась в полное подобие университета — со своими научными отделами, конференциями, лекциями, подгруппами и даже с ухоженными газонами, где исследователи в драных джинсах перебрасывались тарелками-фрисби. Однажды Ульрих заглянул в иммунологическое подразделение компании, специализирующееся на производстве иммунологических препаратов, и поинтересовался, нельзя ли создать препарат, который бы связывался с белком Her-2 и по возможности инактивировал бы его.

Таким препаратом должно было стать особое соединение — антитело. Антитела — это сложные белки, обладающие способностью специфично связываться со своими мишенями. Они вырабатываются иммунной системой организма для связи со специфическими мишенями на бактериях и вирусах и последующего их уничтожения — этакая природная «волшебная пуля». В середине 1970-х годов два иммунолога из Кембриджского университета, Сезар Мильштейн и Георг Кёлер, изобрели способ производить огромные количества антител при помощи гибридной иммунной клетки, физически слитой с раковой клеткой: иммунная клетка секретирует антитела, а раковая клетка, специалист по бесконтрольному росту, ставит дело на поток. В этом открытии мгновенно усмотрели потенциальную возможность лечить рак. Однако для того, чтобы использовать антитела в лечебных целях, исследователям надо было определить мишени, характерные именно для раковых клеток, а это оказалось крайне нелегким делом. И вот теперь Ульрих верил, что ему это наконец удалось. Похоже, что Her-2, амплифицированный в некоторых опухолях молочной железы, но практически незаметный в нормальных тканях, и был мишенью, которой так не хватало Кёлеру.

Тем временем Сламон в Калифорнийском университете провел еще один важнейший эксперимент с раковыми клетками, экспрессирующими Her-2. Он пересадил их мышам, чем вызвал образование рыхлых метастазирующих опухолей, воспроизводящих агрессивное заболевание у людей. В 1988 году иммунологи «Генинтеха» успешно создали мышиные антитела, связывающие и инактивирующие белок Her-2.  Ульрих послал Сламону первые ампулы с антителами, и Сламон приступил к серии ключевых экспериментов. Когда он обработал этими антителами культуру растущих в чашке Петри клеток рака молочной железы с гиперактивностью Her-2, клетки перестали делиться, а потом умерли. Сламон ввел эти антитела живым мышам с опухолями — и опухоли исчезли. Это был тот самый идеальный результат, на который надеялись Сламон и Ульрих: ингибиция Her-2 сработала на животной модели.

Теперь у Сламона и Ульриха были все три необходимых компонента для узкоспецифической, целевой терапии: онкоген, рак, специфически активирующий этот онкоген, и лекарство, специфически действующее на продукт этого онкогена. Оба исследователя ждали, что «Генинтех» ухватится за возможность производить новое лекарство, убирающее сигнал гиперактивного онкогена, но Ульрих, зарывшись в своей лаборатории, не следил за направлением развития деятельности компании. Как выяснилось, «Генинтех» больше не интересовали проблемы рака. В 1980-е годы, пока Ульрих и Сламон охотились за специфичной мишенью раковых клеток, несколько фармацевтических компаний попытались создать лекарства от рака на основании весьма ограниченных сведений о механизмах роста раковых клеток. Вполне предсказуемо, что полученные ими препараты действовали неизбирательно, обладали равной токсичностью как для раковых, так и для нормальных клеток — и предсказуемо провалились на клинических испытаниях.

Подход Ульриха и Сламона — онкоген и антитела к продукту этого онкогена — был несравненно более сложным и специфичным, но руководство «Генинтеха» опасалось, что вложение средств в очередное провальное лекарство подкосит финансовое положение компании. В «Генинтехе» выработалась своего рода «аллергия на рак», и, отрезвленная примером конкурентов, компания перестала финансировать бо́льшую часть своих проектов по раковым заболеваниям.

Это решение привело к глубокому расколу в компании. Небольшая группа ученых пылко поддерживала программы онкологических исследований, но руководство «Генинтеха» предпочитало сосредоточиться на более простых и выгодных лекарствах. Her-2  угодил под перекрестный огонь. Измотанный и отвергнутый Ульрих уволился из компании и поступил на работу в немецкую академическую лабораторию, где изучал онкологическую генетику, не боясь давления со стороны фармацевтических компаний.

Оставшись один, Сламон изо всех сил старался поддерживать в «Генинтехе» работы с Her-2 , хотя сам формально не имел к компании никакого отношения. «Кроме него, никому и дела не было», — вспоминал Джон Курд, медицинский директор «Генинтеха». Сламон стал отверженным в компании — надоедливым оводом, постоянно прилетавшим из Лос-Анджелеса в тщетных попытках заинтересовать хоть кого-нибудь мышиными антителами. Большинство ученых давно утратили интерес к этому проекту. Верность Сламону сохранила лишь небольшая группа исследователей, ностальгирующих по первопроходческим дням компании, когда за проблемы брались именно потому, что они казались неосуществимыми. Сотрудники «Генинтеха» Дэвид Ботштейн, генетик, в свое время окончивший Массачусетский технологический институт, и молекулярный биолог Арт Левинсон по-прежнему поддерживали проект Her-2. Левинсон пришел в «Генинтех» из лаборатории Майкла Бишопа в Калифорнийском университете, где изучал способность src к фосфориляции. Онкогены были вшиты у него в душу. Пустив в ход все свои связи, ресурсы и силы, Сламон и Левинсон добились у руководства поддержки проекта Her-2.

Получив скромное финансирование, проект начал работать, не привлекая внимания «Генинтеха». В 1989 году Майкл Шепард, иммунолог компании, усовершенствовал процесс получения и очистки антител к белку Her-2. Однако Сламон понимал — от мышиных антител еще далеко до человеческого лекарства. Мышиные антитела, чужеродные для человеческого организма белки, спровоцируют мощный иммунный ответ в организме человека, так что лекарства из них не выйдет. Чтобы предотвратить такую иммунную реакцию, антитела следовало преобразовать в белок, более сходный с обычными человеческими антителами. Этот процесс, выразительно называемый очеловечиванием антител, представляет собой столь же тонкое и деликатное искусство, что и перевод романа на иностранный язык. В нем важно не только содержание, но и неуловимая суть антитела — его форма. В «Генинтехе» этим искусством занимался Поль Картер, тихий двадцатидевятилетний англичанин, выучившийся очеловечиванию в Кембридже у Сезара Мильштейна, который первым получил антитела, слив раковую клетку с иммунной. Под руководством Сламона и Шепарда Картер взялся за мышиные антитела и летом 1990 года с гордостью предъявил полностью очеловеченные антитела к Her-2, готовые к клиническим испытаниям. Эти антитела, став потенциальным лекарством, вскоре получили новое название герцептин[43].

Рождение нового лекарства казалось настолько трудным, болезненным и медленным, что за хитросплетениями его истории легко позабыть, как много значила эта победа. Сламон выявил амплификацию гена Her-2 в 1987 году, Картер и Шепард получили очеловеченные антитела в 1990 году. Всего за три года они прошли путь от поиска перспективного заболевания к фармакологическим исследованиям и успешному созданию лекарства — скорость, беспрецедентная в истории рака.

 

Летом 1990 года Барбара Брэдфилд, сорокавосьмилетняя жительница калифорнийского городка Бербанк, обнаружила уплотнение в груди и вздутие под мышкой. Биопсия подтвердила то, что Барбара и сама заподозрила: рак молочной железы, распространившийся на лимфатические узлы. Барбаре сделали двустороннюю мастэктомию, за которой последовал курс химиотерапии, растянувшийся почти на семь месяцев. «Когда я все это закончила, — вспоминала она, — у меня было ощущение, что я пересекла реку трагедии».

Однако впереди ее ждали новые опасные переправы. Зимой 1991 года погибла ее двадцатитрехлетняя беременная дочь, а через несколько месяцев после этого, смиренно сидя в классе по изучению Библии, Барбара рассеянно провела пальцами по шее и нащупала над ключицей новую шишку размером с виноградину. Рак молочной железы вернулся, дав новые метастазы — предвестием почти неминуемой смерти.

Онколог, лечивший Брэдфилд в Бербанке, предложил ей очередной курс химиотерапии, но она отказалась, записалась на альтернативную программу траволечения, купила соковыжималку для овощей и собралась ехать в Мексику. Ее онколог попросил разрешения направить образцы ее ткани в лабораторию Сламона для консультации, и Барбара неохотно согласилась, понимая, что никакой доктор, проводящий непонятные тесты, ей ничем не поможет.

Летом 1991 года Сламон неожиданно позвонил Барбаре домой и, представившись исследователем, проводившим анализ ее биопсии, рассказал о Her-2. «Тон у него изменился», — рассказывала она. Сламон сообщил, что никогда еще не видел такого высокого уровня амплификации Her-2 , как у нее. Он начинает клинические испытания антител, связывающих белок, продуцируемый этим геном, и она стала бы идеальной кандидатурой для проверки нового лекарства. Брэдфилд отказалась. «Я была в конце своего пути, — рассказывала она, — и смирилась с тем, что казалось неизбежным». Сламон некоторое время пытался переубедить ее, но Барбара оставалась непреклонна. Он поблагодарил ее и распрощался.

На следующий день он позвонил снова, извиняясь за навязчивость, и объяснил, что решение Барбары не давало ему покоя всю ночь. Ему никогда прежде не встречался такой вариант амплификации Her-2, опухоль Брэдфилд просто раздувалась от Her-2, была невероятно накачана онкогеном. Сламон снова просил Барбару принять участие в испытаниях.

«Те, кому удалось уцелеть, оглядываются назад в поисках знамений, пропущенных ими посланий судьбы», — писала Джоан Дидион. Для Барбары второй звонок Сламона стал посланием, которое нельзя пропускать. Что-то в этой беседе пробило стену, которой Брэдфилд отгородилась от мира. Теплым августовским утром 1992 года она посетила Сламона в клинике при Калифорнийском университете. Он встретил ее в вестибюле и провел в свой кабинет, где под микроскопом продемонстрировал выделенный из ее опухоли препарат с темными кольцами окрашенных на Her-2 клеток. Потом он нарисовал на доске шаг за шагом все детали эпического научного путешествия: обнаружение гена neu, вторичное его открытие лабораторией Ульриха, борьба за разрешение на производство лекарства — и вот, наконец, антитела, мастерски полученные Шепардом и Картером. Брэдфилд обдумала эту цепочку, растянувшуюся от онкогена к лекарству, и согласилась принять участие в испытаниях Сламона.

Решение оказалось на диво удачным. За четыре месяца от телефонного звонка Сламона до первой капельницы с герцептином опухоль Барбары разрослась, образовав в легких шестнадцать новых очагов.

В проводимых Сламоном испытаниях 1992 года, помимо Брэдфилд, участвовало еще пятнадцать пациенток (впоследствии число их выросло до тридцати семи). Лекарство давалось на протяжении девяти недель в сочетании с цисплатином, стандартным препаратом химиотерапии, убивающим раковые клетки. Оба лекарства вводились внутривенно. Для удобства Сламон запланировал проводить процедуры всем пациенткам в один и тот же день и в одном и том же помещении. Эффект получился в высшей степени театральный — точно на сцене, занятой труппой взволнованных актрис. Одни женщины стремились любой ценой попасть на испытания, уговаривая Сламона через друзей и родственников, других, таких как Брэдфилд, насилу уговорил он сам. «Все мы знали, что ведем жизнь взаймы, — рассказывала потом Барбара, — и потому ощущали и переживали все вдвое ярче обычного». Китаянка лет пятидесяти протаскивала с собой заначки лечебных трав и солей, которые, по ее словам, только и поддерживали ее в живых. Она согласилась испробовать новое средство, герцептин, только с условием, что ей позволят вместе с ним принимать и старинные средства. Хрупкая худенькая женщина лет тридцати, у которой случился рецидив рака после трансплантации костного мозга, сидела в уголке, всем своим существом источая мрачную решимость. Одни относились к болезни уважительно, другие так вымотались, что им было уже все равно. Почтенная мать семейства из Бостона постоянно отпускала соленые шуточки о своем раке. Череда капельниц и анализов растягивалась на целый день, отнимая последние силы. Поздно вечером процедуры завершались, и пациентки расходились. Барбара возвращалась домой и молилась. Одна из ее сестер по несчастью утешалась мартини.

Шишка на шее у Барбары — единственная опухоль во всей группе, которую можно было увидеть, потрогать и излечить, — стала компасом испытаний. На утро первой капельницы с антителами к Her-2 все женщины по очереди подошли потрогать шишку, одна за другой проводя пальцами по ключице Барбары. Этот глубоко интимный ритуал повторялся каждую неделю. Через две недели после начала испытаний наступили разительные перемены. Опухоль стала мягче и слегка уменьшилась в размере. «Мы начали верить, что что-то происходит, — вспоминала Брэдфилд. — Внезапно до нас дошло, как же нам повезло».

Не все оказались столь удачливы, как она. Молодая женщина с рецидивом, измученная и одуревшая от тошноты, в какой-то вечер не нашла сил заботиться о поддержании необходимого уровня жидкости. Ее рвало всю ночь, а под утро она уснула, от усталости позабыв, что ей надо как можно больше пить. У нее отказали почки, и на следующей неделе она умерла.

Поразительный ответ Барбары на лечение и дальше шел такими же темпами. Через два месяца после начала испытаний ей сделали повторную томограмму, и выяснилось: опухоль на шее пропала почти бесследно, а образования в груди уменьшились как в числе, так и в объеме. Ответ на лечение у остальных тринадцати пациенток был не столь очевиден. Через три месяца, в середине срока испытаний, когда Сламон вместе с представителями «Генинтеха» и внешними экспертами по проведению испытаний пересматривал результаты, им пришлось принять нелегкое решение. У некоторых женщин опухоли остались прежнего размера — не уменьшились, но и не выросли: могло ли это считаться положительным ответом? Другие пациентки с метастазами говорили, что у них стали слабее боли в костях — но ведь боль нельзя оценить объективно. После долгих и ожесточенных споров координаторы испытаний настояли на том, чтобы снять с программы семь женщин, поскольку их результаты не поддавались количественному анализу. Еще одна женщина сама перестала приходить за лекарством. Только пять человек из первоначальной группы, включая саму Брэдфилд, дошли до конца шестимесячного курса. Остальные, разочарованные и ожесточенные, вернулись к своим прежним онкологам. Их мечты о чудесном лекарстве вновь потерпели крах.

Барбара Брэдфилд закончила восемнадцатинедельный цикл лечения в 1993 году и жива по сей день. Седовласая женщина с ясными серыми глазами, она живет в маленьком городке под Сиэтлом, гуляет по окрестным лесам и ведет дискуссионную группу при церкви. Она живо вспоминает лос-анджелесскую клинику — полутемную комнатку, в которой медсестры отмеряли лекарства, странно-интимное прикосновение других пациенток к узелку у нее на шее. И разумеется, Сламона. «Дэннис — мой герой, — сказала она. — Во время его первого звонка я отказалась, но с тех пор больше не отказывала ему ни в чем». Я разговаривал с ней по телефону, и казалось — в трубке потрескивает не статическое электричество, а напор ее жизненной силы. Она забросала меня множеством вопросов о моих исследованиях. Под конец я поблагодарил ее за уделенное мне время, но она сама извинилась за то, что отвлекает меня от работы.

«Ступайте, ступайте! — со смехом сказала она. — Столько людей ждет ваших открытий!»

 


Дата добавления: 2019-02-12; просмотров: 63; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!