Выявление нужных клонов в генной библиотеке путем гибридизации с радиоактивным днк-зондом.



Нужную нуклеотидную последовательность в образце ДНК можно обнаружить с помощью ДНК-зонда, спаривающегося только с искомой последовательностью. Для этого ДНК сначала переводят в одноцепочечную форму, подвергнув ее тепловой обработке или воздействию щелочью. В этих условиях водородные связи между основаниями разрываются и цепи расходятся

Этот метод широко применяется для локализации радиоактивного материала в клетке, срезе ткани или на пластине геля после электрофореза смеси макромолекул. Для регистрации радиоактивных зон на исследуемый образец накладывают рентгеновскую пленку, в которой под действием радиоактивного излучения из бромида серебра образуется металлическое серебро. «Засвеченные» участки, соответствующие радиоактивным зонам, наблюдаются визуально после проявления пленки. Одним из вариантов радиоавтографии является флюорография. В этом случае в исследуемый образец импрегнируют сцинтиллятор и вновь накладывают рентгеновскую пленку. Метод основан на том, что низкоэнергетические Р-частицы, образующиеся при распаде изотопа (например, трития), взаимодействуют с молекулами сцинтиллятора, при этом энергия радиоактивного распада преобразуется в световую энергию, которая и регистрируется рентгеновской пленкой, чувствительной к синей области спектра. Все операции при радиоавтографии необходимо проводить в темноте, чтобы не засветить пленку.

Очень важной областью применения радиоавтографии является обнаружение радиоактивного ДНК-зонда после его гибридизации с препаратом ДНК, подвергнутым электрофоретическому разделению. К сожалению, провести гибридизацию в самом геле невозможно, поскольку зонд не может в него проникнуть. Поэтому ДНК после электрофореза переносят на нитроцеллюлозный или найлоновый фильтр по методу Саузерна (Саузерн-блотгинг) или с помощью элюции. Расположение молекул ДНК на фильтре в точности соответствует таковому в геле. Перенесенную на фильтр ДНК подвергают денатурации и фиксируют, а затем проводят гибридизацию с радиоактивным ДНК-зондом. Гибридизационный сигнал регистрируют радиоавтографическими методами.

Процедура ДНК-гибридизации состоит в следующем. ДНК-мишень подвергают денатурации и одноцепочечные молекулы необратимо «пришивают» к твердой подложке (нитроцеллюлоз-ному или найлоновому фильтру). Эту процедуру обычно проводят при высокой температуре. Затем фильтр инкубируют с одноцепочечным ДНК-зондом, меченным радиоизотопом или другой меткой. Если нуклеотидные последовательности зонда и ДНК-мишени комплементарны, то происходит их спаривание (т. е. гибридизация) (рис. 4.11). Гибридные молекулы можно визуализировать радиоавтографическим (дополнение 4.2) или другим методом, зависящим от природы метки. Если комплементарность между зондом и ДНК-мишенью отсутствует, то гибридизации не происходит, и мы получаем отрицательный результат. Обычно размер зонда варьирует от 100 до 1000 п. н. и более, хотя можно использовать как более крупные зонды, так и зонды меньшего размера. Для гибридизации, т. е. для образования стабильного комплекса, необходимо, чтобы на участке длиной 50 нуклеотидов совпадало более 80% из них, но это зависит от условий реакции.

Меченые ДНК-зонды можно получить разными способами. Один из них, называемый методом случайных праймеров, основан на применении смеси синтетических олигонуклеотидов (олигомеров), содержащих все возможные комбинации из шести нуклеотидов. Некоторые из этих олигонуклеотидов оказываются комплементарными последовательностям ДНК-мишени и гибридизуются с ними, если ДНК предварительно денатурировать (рис. 4.12). После отжига олигонуклеотидов с денатурированной ДНК-мат-рицей в реакционную смесь добавляют четыре де-зоксирибонуклеотида (дезоксирибонуклеозид-трифосфаты; dNTP), один из них — меченый, и фрагмент ДНК полимеразы 1 Е. coli (фрагмент Кленова). Фрагмент Кленова обладает ДНК-по-лимеразной и З'-экзонуклеазной активностями, но не 5'-экзонуклеазной активностью, присущей ДНК-полимеразе I Е. coli, которая могла бы расщепить новосинтезированные молекулы ДНК. Одиночные цепи ДНК-мишени служат матрицами для синтеза новых молекул ДНК, а связанные с ними случайным образом олигонуклеотиды — затравками (рис. 4.12). При радиоактивном мечении один из dNTP содержит а-32Р, так что 32Р-мечен-ным оказывается и сам зонд. Радиоактивную метку выявляют с помощью радиоавтографии.

В качестве нерадиоизотопной метки часто используют биотин, который присоединяют к одному из четырех dNTP. Для выявления гиоридизо-вавшегося биотинилированного зонда на фильтр наносят конъюгат стрептавидина с соответствующим ферментом (например, щелочной фосфатазой). Стрептавидин образует комплекс с биотином, который обнаруживается благодаря тому, что под действием фермента образуется окрашенное или люминесцирующее вещество — продукт превращения нанесенного на фильтр субстрата.

Зонды для скрининга геномной библиотеки можно получить по крайней мере двумя способами. Во-первых, можно использовать клонированную ДНК близкородственного организма (гетерологичный зонд). В этом случае условия гибридизации нужно подбирать таким образом, чтобы она могла происходить при существенном расхождении между нуклеотидными последовательностями зонда и искомой ДНК; это позволяет решить проблемы, связанные с заведомым различием между ДНК — источником зонда и исследуемой ДНК. Во-вторых, зонд можно получить методом химического синтеза, основываясь на известной аминокислотной последовательности белкового продукта искомого гена.

ПЦР

Полимеразная цепная реакция (ПЦР) — это эффективный способ получения in vitro большого числа копий специфических нуклеотидных последовательностей. Их амплификация — иногда в миллионы раз — осуществляется в ходе трехэтапного циклического процесса. Для ПЦР необходимы: I) два синтетических олигонуклеотидных праймера (длиной примерно по 20 нуклеотидов), комплементарные участкам ДНК из противоположных цепей, фланкирующим последовательность-мишень; их 3'-гидроксильные концы после отжига с ДНК должны быть ориентированы навстречу друг другу; 2) ДНК-мишень длиной от 100 до -35 000 п. н.; 3) термостабильная ДНК-по-лимераза, которая не теряет своей активности при температуре 95° и выше; 4) четыре дезокси-рибонуклеотида.

Типичная ПЦР-амплификация состоит в многократном повторении следующих трех реакций.

1. Денатурация. Первый этап ПЦР состоит в тепловой денатурации образца ДНК выдерживанием его при температуре 95 °С в течение по крайней мере 1 мин. Помимо ДНК, в реакционной смеси содержатся в избытке два праймера, термостабильная ДНК-полимераза Taq, выделенная из бактерий Thermus aquati-cus, и четыре дезоксирибонуклеотида.

2. Ренатурация. Температуру смеси медленно понижают до ~55 °С, при этом праймеры спариваются с комплементарными последовательностями ДНК.

3. Синтез. Температуру повышают до ~75 °С — величины, оптимальной для ДНК-полимеразы Taq. Начинается синтез комплементарной цепи ДНК, инициируемый 3'-гидроксильной группой праймера.

Все реакции проводят в пробирках, погруженных в термостат. Смена температурного режима и его поддержание осуществляются автоматически. Каждый цикл обычно длится 3—5 мин.

Чтобы понять, как именно происходит амплификация определенного сегмента ДНК в ходе ПЦР, нужно четко представлять положение всех праймеров и комплементарных им последовательностей в амплифицируемых цепях в каждом раунде. В первом раунде каждая из новосинтезирован-ных цепей имеет гораздо большую длину, чем расстояние от 3'-гидроксильной группы «ее» праймера до концевого нуклеотида последовательности, комплементарной второму праймеру. Такие цепи называют «длинными матрицами», именно на них будет идти дальнейший синтез (рис. 5.18).

Во втором раунде двухцепочечную ДНК, состоящую из исходной и новосинтезированной («длинная матрица») цепей, опять подвергают денатурации, а затем отжигают с праймерами. Во время синтеза в этом раунде вновь синтезируются «длинные матрицы», а также некоторое количество цепей с праймером на одном конце и с последовательностью, комплементарной второму праймеру, на другом («короткие матрицы») (рис. 5.19). Во время третьего раунда все гетеродуплексы, образовавшиеся ранее, одновременно подвергаются денатурации и отжигу с праймерами, а затем реплицируются (рис. 5.20). В последующих раундах «коротких матриц» становится все больше, и к 30-му раунду их число уже в 106 раз превышает число исходных цепей или «длинных» матриц (рис. 5.21).

Метод ПЦР получил широкое распространение. Разнообразные случаи его применения мы рассмотрим в последующих главах. Здесь упомянем лишь некоторые из них. Один из важнейших — идентификация патогенных микроорганизмов, возбудителей заболеваний человека, животных и растений. С появлением ПЦР отпала необходимость в выделении и очистке ДНК-мишени; для анализа можно использовать очень небольшое количество неочищенного материала. Для синтеза праймеров, специфичных в отношении исключительно ДНК-мишени, нужно знать нуклеотидную последовательность ДНК предполагаемого патогенного микроорганизма. В этом случае в ходе ПЦР будет амплицициро-ваться только фрагмент ДНК, длина которого равна суммарной длине двух праймеров и фрагмента ДНК между ними.

ПЦР — высокочувствительный метод, поэтому при наличии в исследуемом образце даже ничтожного количества ДНК, случайно попавшейиз одной реакционной смеси в другую, могут быть получены ложноположительные результаты. Это заставляет тщательно контролировать все используемые для ПЦР растворы и посуду.

Метод 11ЦР применяется также для выявления спонтанных мутаций, внесения специфических мутаций in vitro, сборки полноразмерных генов из синтетических олигонуклеотидов, секвенирования ДНК. Во многих случаях возникает необходимость в клонировании ПЦР-продук-та. Однако прямое клонирование с помощью лигирования по тупым концам затруднено, по скольку полимераза Taq присоединяет к 3'-концу синтезируемой цепи лишний адениннуклео-тид, что снижает эффективность лигирования. Но если вектор для клонирования обработать рестрицирующей нуклеазой с образованием новых тупых концов и затем проинкубировать с полимеразой Taq в присутствии dTTP, то к обоим 3'-концам фрагментов добавится по одному тимидиннуклеотиду. Взаимной комплементарное™ концевых участков вектора и ПЦР-проду-кта протяженностью в один-единственный нуклеотид оказывается достаточно для спаривания молекул и их последующего лигирования.

 

13.Методы секвенирования ДНК.Использование нерадиоактивных меток при секвенировании.

 

Секвенирование ДНК по Сэнгеру: "плюс-минус" метод

Первым методом прямого ферментативного секвенирования ДНК стал метод, предложенный Ф. Сэнгером и Д. Коулсоном в 1975 г. В качестве матрицы в реакции полимеразного копирования использовался одноцепочечный фрагмент ДНК, в качестве праймеров - синтетические олигонуклеотиды или природные субфрагменты, получаемые при гидролизе рестрицирующими эндонуклеазами, а в качестве фермента - фрагмент Кленова ДНК полимеразы I (PolI) из E.coli. Метод включал два этапа. Сначала в ограниченных условиях проводили полимеразную реакцию в присутствии всех четырех типов dNTP (один из них был мечен по альфа-положению фосфата), получая на выходе набор продуктов неполного копирования матричного фрагмента. Смесь очищали от несвязавшихся дезоксинуклеозидтрифосфатов и делили на восемь частей. После чего в "плюс" системе проводили четыре реакции в присутствии каждого из четырех типов нуклеотидов, а в "минус" системе - в отсутствие каждого из них. В результате, в "минус" системе терминация происходила перед dNTP данного типа, а в "плюс" системе - после него. Полученные таким образом восемь образцов разделяли с помощью электрофореза, "считывали" сигнал и определяли последовательность исходной ДНК. Этим способом была секвенирована короткая ДНК фага фХ174, состоящая из 5386 нуклеотидных пар.

Секвенирование ДНК по Сэнгеру: метод "терминаторов"

В 1977 г. автор "плюс-минус" метода предложил еще один способ ферментативного секвенирования, получивший название метода терминирующих аналогов трифосфатов. Более мощный и более технологичный, этот способ, несколько модифицированный, применяется до сих пор. В основе метода тоже лежало ферментативное копирование с помощью фрагмента Кленова ДНК полимеразы I из E.coli. В качестве праймеров использовали синтетические олигонуклеотиды. Специфическую терминацию синтеза обеспечивали добавлением в реакционную смесь помимо четырех типов dNTP (один из которых был радиоактивно мечен по альфа положению фосфата) еще и одного из 2',3'-дидезоксинуклеозидтрифосфатов (ddATP, ddTTP, ddCTP или ddGTP), который способен включаться в растущую цепь ДНК, но не способен обеспечивать дальнейшее копирование из-за отсутствия 3'-ОН группы. Отношение концентраций dNTP/ddNTP авторы подбирали экспериментально, так, чтобы в итоге получить набор копий ДНК различной длины. Таким образом, для определения первичной структуры исследуемого фрагмента ДНК требовалось провести четыре реакции копирования: по одному типу терминаторов в каждой из реакций. После этого полученные продукты разгонялись в полиакриламидном геле на соседних дорожках и по расположению полос определялась последовательность нуклеотидов.

Секвенирование ДНК по Максаму и Гилберту: метод химической деградации


В 1976 г. А. Максамом и У. Гилбертом был разработан метод секвенирования, основанный на специфической химической деградации фрагмента ДНК, радиоактивно меченного с одного конца. Препарат меченной ДНК разделяли на четыре аликвоты и каждую обрабатывали реагентом, модифицирующим одно или два из четырех оснований. А. Максам и У. Гилберт предложили модифицировать пуриновые основания диметилсульфатом. При этом происходит метилирование адениновых остатков по азоту в положении 3, а гуаниновых - по азоту в положении 7. Обработка образца ДНК соляной кислотой при 0°С приводит к выщеплению метиладенина. Последующая инкубация при температуре 90°С в щелочной среде вызывает разрыв сахарно-фосфатной цепи ДНК в местах выщепления оснований. Обработка пиперидином приводит к гидролизу образца по остаткам метилгуанина. Пиримидиновые основания модифицируют гидразином. Если реакцию вести в бессолевой среде, то модифицируются как цитозин, так и тимидин; если обработку вести в присутствии 2М NaCl, то модифицируется лишь цитозин. Расщепление цепи ДНК на фрагменты и в этом случае осуществляется пиперидином. Условия реакций авторы подбирали таким образом, чтобы в итоге получить полный набор субфрагментов разной длины. Последующий электрофорез в полиакриламидном геле позволяет восстановить полную структуру исследуемого фрагмента.

 


Дата добавления: 2016-01-04; просмотров: 108; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!