Группировка материала статистических наблюдений



Измеряя характеристики объекта, исследователь собирает пер­вичный статистический материал. Дальнейшая его задача состоит в систематизации и обобщении результатов измерения для выявле­ния характерных черт, существенных свойств тех или иных типов Явлений, обнаружения закономерностей изучаемых процессов и про­верки гипотез, лежащих в основе исследования. В основе исполь­зуемых методов обработки полученных материалов исследования лежит предварительное упорядочение первичных данных главным образом при помощи статистической группировки и составления статистических таблиц.

 

Статистическая группировка.

Распределение изучаемой совокуп­ности на однородные группы по существенным для нее признакам (характеристикам) называется статистической группировкой.

Основное назначение группировки состоит, во-первых, в уста­новлении численности каждой отдельно взятой части совокупности, расчленённой в соответствии со значениями определенного признака (или нескольких признаков), и, во-вторых, в изучении влияния причин и зависимости явлений.

Главным вопросом метода группировки является правильный выбор группировочных признаков. Могут быть получены превосход­ные данные, по эти сведения пропадут совсем, если их группировка будет произведена неправильно. Поэтому при выборе признаков для отграничения явлений одного типа от явлений других типов необхо­димо руководствоваться не субъективными построениями, а содер­жательным анализом особенностей социальных явлений, задачами исследования, а также видом признаков, с которыми имеет дело исследователь. Основные группировки должны тщательно разрабатываться уже при составлении программы социологического исследования с необходимостью отражать ключевые гипотезы.

Ряды распределения.

Результат группировки единиц наблюдения по какому-либо признаку называется статистическим рядом. Обозначим группировочный признак х. Пусть это будет уровень образова­ния каждого человека в данном списке лиц. Получим неупорядочен­ный ряд результатов отдельных наблюдений: 10, 5, 7, 8, 10, 10 10 (классы). Если отдельные наблюдения расположить в порядке воз­растания указанных выше значений признака, то получим вариаци­онный ряд: 5, 7, 8, 10, 10, 10, 10.

По вариационному ряду количественного признака можно под­считать, как часто каждое значение этого признака встречается в совокупности. В результате получим частотное распределение для данного признака. Иногда его называют эмпирическим или стати­стическим распределением. Для вышеприведенного примера частотное распределение выглядит так:

Условимся каждое, отдельное значение признака х обозначать х1, х2,… , xk (в данном примере это 5, 7, 8, 9 и 10 классов).

Абсолютное число, показывающее, сколько раз встречается то или иное значение признака х, называется частотой и обозначается соответственно n1, n2, ..., nk.

Относительной частотой называется доля значений признака в общем числе наблюдений и обозначается m1, .,., mk.

Например, для приведенного частотного ряда частота наиболь­шего значения признака (10 классов) равна 4, а относительная частота m5 = 4/8 = 0,5. Относительную частоту обычно выражают в процентах (mk = 50%).

Сгруппированные данные. Как правило, для последующей статистической обработки или более наглядного представления данных отдельные значения признаков объединяются в группы (интервалы). В этом случае частоты соотносят уже не с каждым отдельным зна­чением признака, как это делалось в предыдущем примере, а с ря­дом значений, попадающих в определенный интервал.

Например, распределение уровня образования в вышеприведенном примере может быть представлено в виде интервального ряда следующим образом:

Частотное распределение с не сгруппированными значениями иногда называют дискретным рядом распределения.

При построении интервальных рядов большое значение имеет выбор типа, количества и размеров интервалов. Общее требование к этому выбору состоит в том, что группировка должна наиболее полно выявлять существенные свойства рядов распределения.

Существующие формальные правила выбора оптимальной вели­чины интервалов редко оказываются полезными при работе с социо­логическими данными13. Как правило, приходится делать выбор между двумя крайностями: слишком крупные интервалы для дан­ного объема выборки скрадывают многие нюансы в описании явле­ния, а слишком дробные ведут к статистически незначимым малым частотам внутри интервала.

Интервальные ряды распределения могут строиться с равными и неравными интервалами. Неравные интервалы применяются при неравномерном распределении частот значений группировочного признака — для выделения качественно отличных типов явлений. Например, выбор интервалов при группировке данных распределения совокупности опрошенных по возрасту можно основываться на этапах жизненного цикла. При группировке семей по признаку «число книг в семье», опираясь на информацию ранее проведенных исследований о том, что чаще всего встречаются библиотеки с чис­лом книг по 500 и реже — библиотеки, насчитывающие 10000 книг, целесообразно установить неравные интервалы группировки, напри­мер такие: 1—50, 51—100, 101—200, 201—300, 301—500, 501—700, 701-1000, 1001-2000, 2001—5000, 5001-10000.

Если у исследователя нет предварительной информации, о харак­тере распределения по тому или иному признаку, то следует зада­вать равные интервалы. Равные интервалы также наиболее удобны при использовании методов математической статистики. Опыт пока­зывает, что по каждому из признаков не следует брать более 20 группировочных интервалов.

При образовании интервалов необходимо точно обозначить коли­чественные границы группы, избегая таких обозначений границ интервалов, при которых отдельные единицы совокупности могут быть отнесены в две соседние группы. Поэтому, как правило, необ­ходимы дополнительные указания о том, считать ли граничные значения интервалов «включительно» или «исключительно».

Довольно часто социологу приходится сталкиваться с ситуацией, когда необходимо провести перегруппировку материала, задав дру­гие интервалы, но нет возможности при этом обратиться к перво­начальным статистическим данным.

При расщеплении интервала на несколько частей приходится вводить априорное предположение о частотном распределении внут­ри интервала, поскольку истинное распределение неизвестно. Самым простым является предположение о равномерности частотного рас­пределения по отдельным значениям признака. Другие формы распределения требуют достаточно громоздких вычислений14.

Статистические таблицы.

Предусмотренные программой исследо­вания и методиками обработки группировки объектов по каждому из признаков кладутся в основу статистических таблиц, обобщаю­щих исходные данные.

В дальнейшем составляют более сложные таблицы, позволяющие сопоставлять ряды распределений, и, наконец, комбинационные таблицы, в которых три или более признака перекрещиваются, ком­бинируются. По таким таблицам устанавливаются, измеряются и анализируются связи между признаками исследуемой совокупности объектов.

Построение таблицы подчинено определенным правилам. Основ­ное содержание таблицы должно быть отражено в названии (круг рассматриваемых вопросов, географические границы статистической совокупности, время, единицы измерения). Таблицы бывают простые, групповые и комбинационные.

Простые таблицы представляют собой перечень, список, отдельных единиц совокупности о количественной (или качественной) характеристикой каждой из них в отдельности.

В групповых таблицах содержится группировка единиц совокуп­ности по одному признаку, а в комбинационных — по двум и более признакам.

Примером комбинационной разработки статистической таблицы может служить табл. 1.

Такая таблица представляет собой нечто гораздо большее, чем простой перечень данных, она является способом и вместе с тем результатом определенной организации данных. Хорошо сконструи­рованная таблица позволяет исследователю более четко представить и описать смысл и сущность изучаемого им социального явления.

Таким образом, метод группировки и представление материала в виде статистических таблиц уже дают определенные возможности для изучения социологических данных. С другой стороны, он является совершенно необходимым средством для дальнейшего анализа и применения более тонких статистических методов.

 

3. Графическая интерпретацияэмпирических зависимостей

Частотные распределения изображаются также в виде диаграмм и графиков. Главным достоинством графического изображения яв­ляется его наглядность.

Графическая интерпретация эмпирических зависимостей осно­вана на знании технических правил построения рядов, типов и свойств теоретических распределений. Здесь мы рассмотрим графика вариационных рядов: гистограмму, полигон и кумуляту распределения.

Гистограмма.

Гистограмма — это графическое изображение интервального ряда. По оси абсцисс откладывают границы интервалов, на которых строят прямоугольники с высотой, пропорциональной плотностям распределения соответствующих интервалов (пропор­циональной числу единиц совокупности, приходящейся на единицу длины интервала). При равных интервалах плотности распределения пропорциональны частотам, которые и откладываются по оси ординат (рис. 1, табл. 2).

На гистограмме общее число лиц в каждой категории выражает­ся площадью соответствующего прямоугольника, а общая площадь равна численности совокупности (так как гистограмма на рис. 1 строится по относительным частотам, то площадь равна единице (100%). Поэтому для интервалов 4—6, 6—8, 8—10 в табл. 2, которые в 2 раза больше предыдущих, нужно брать высоты прямоугольников в 2 раза меньшие. При нанесении на графикепоследне­го открытого интервала 

 

«10 лет и более» условно будем считать верхней его границей 40 лет. Тогда ширина интервала равна 30го­дам, а плотность распределения — около 0,5% (15,7 : 30 ~ 0,5).

Полигон распределения.

Для построения полигона величина при­знака откладывается на оси абсцисс, а частоты или относительные частоты — на оси ординат. Из точек, соответствующих значениям признака, восстанавливаются перпендикуляры, равные по высоте частотам. Вершины перпендикуляров соединяются прямыми ли­ниями.

Для интервального ряда ординаты, пропорциональные частоте (или относительной частоте) интервала, восстанавливаются перпен­дикулярно оси абсцисс в точке, соответствующей середине данного интервала.

Следующие данные распределения рабочих в возрасте до 24 лет по тарифным разрядам (высококвалифицированные рабочие сельхоз-машиностроения)15 дают возможность построить полигон распределе­ния (рис. 2):

 

Условно принято крайние ординаты признака соединять с серединами примыкающих интервалов (на рис. 2 эти замыкающие линии нанесены пунктиром). Однако для распределения, где концентрация событий увеличивается на концах полигона, такое изображение мо­жет привести к ложным представлениям о существе явления.

Кумулята.

Для графического изображения вариационных рядов используются также кумулятивные кривые. При построении кумуляты, как и гистограммы, на оси абсцисс откладываются границы интервалов (либо значения дискретного признака), а на оси орди­нат — накопленные частоты (либо относительные частоты), соответ­ствующие верхним границам интервалов. Таким образом, отличие кумуляты от гистограммы в том, что на графике кумуляты столби­ки, пропорциональные частотам, последовательно накладываются один на другой, так что высота последнего столбика является сум­мой высот столбиков гистограммы.

Кумулята округляет индивидуальные значения признака в пре­делах интервала и представляет собой возрастающую ломаную линию.

Кумулята позволяет быстро определить процент лиц, находящихся ниже или выше заданной величины признака. Например, по данным табл. 3, процент семейств, в которых муж старше cyпруги не более чем на 5 лет, равен 65 (рис. 3, точка А).

 


Дата добавления: 2018-10-26; просмотров: 281; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!