Корпускулярно-волновой дуализм



 

Это открытие берет начало от предположения, выдвинутого французским аристократом Луи де Бройлем. Оно звучит очень просто, но бьет в самую цель. Мысль де Бройля можно выразить так: «Если световые волны могут вести себя, как частицы, то почему бы электронам не вести себя, как волны?» Закончи он на этом, он бы, конечно, не стал одним из тех, кого считают основателями квантовой теории, и не получил бы Нобелевскую премию в 1929 году. Как чистое размышление, идея не имеет большого значения. Кроме того, такие идеи уже высказывались на тему рентгеновских лучей задолго до работы Комптона, по крайней мере уже в 1912 году, когда великий физик (и также Нобелевский лауреат) У. Л. Брэгг описал состояние рентгеновской физики тех лет: «Проблема, как мне кажется, не в том, чтобы выбрать одну из двух теорий рентгеновских лучей, а в том, чтобы создать… одну теорию, которая вмещала бы обе»[19]. Величайшее достижение де Бройля состоит в том, что он взял идею о корпускулярноволновом дуализме и выразил ее математически, описав, как должны вести себя волны материи, а также предложил способы их экспериментального наблюдения. Он был относительно молодым членом сообщества физиков-теоретиков, но имел великое преимущество: его старший брат Морис был уважаемым физиком-экспериментатором, и именно он подтолкнул Луи к открытию. Впоследствии Луи де Бройль сказал, что в разговорах с ним Морис подчеркнул «важность и неизбежность двойственности волн и частиц». Тогда пришло время для этой идеи, и Луи де Бройлю повезло подхватить ее именно в тот момент, когда концептуально простой интуитивный шаг мог перевернуть теоретическую физику. Но он, само собой, извлек из своего интуитивного скачка все возможное.

Де Бройль родился в 1892 году. По семейной традиции, ему была уготована карьера гражданского служащего, но, поступив в 1910 году в университет Парижа, он загорелся интересом к науке, особенно к квантовой механике, мир которой был отчасти открыт ему братом (на семнадцать лет его старше), который получил докторскую степень в 1908 году и исполнял обязанности одного из научных секретарей первого Сольвеевского конгресса, передавая информацию Луи. Однако через несколько лет, в 1913 году, его изучение физики было прервано обязательной службой в армии. Он должен был отслужить небольшой период времени, но из-за Первой мировой войны оставался в рядах вооруженных сил до 1919 года. Вернувшись с войны, де Бройль продолжил изучение квантовой теории и начал работать в той области, которая в итоге привела его к обнаружению фундаментального единства корпускулярной и волновой теории. Прорыв случился в 1923 году, когда он опубликовал три работы о природе световых квантов во французском журнале Comptes Rendus и составил на английском языке их краткое описание, которое в феврале 1924 года появилось в журнале Philosophical Magazine. Эти короткие статьи не возымели особенного эффекта, но де Бройль тотчас принялся за организацию своих идей, чтобы представить их в более завершенной форме в своей докторской диссертации. Он защитил ее в Сорбонне в ноябре 1924 года, а в начале 1925 года диссертация была опубликована в журнале Annales de Physique. Именно в такой форме стало очевидным основание его работы, которая теперь считается одним из главных завоеваний физики, случившихся в 1920-х годах.

В своей диссертации де Бройль отталкивался от двух уравнений, полученных Эйнштейном для светового кванта:

 

Е = hv; p = hv/c.

 

В обоих этих уравнениях свойства, которые «принадлежат» частицам (энергия и импульс), оказываются слева, а свойства, «принадлежащие» волнам (частота), – справа. Де Бройль утверждал, что попытки установить раз и навсегда, является ли свет волной или частицей, потерпели неудачу, поскольку два типа поведения неразрывно связаны – и даже чтобы измерить импульс частицы, необходимо знать ее волновое свойство – частоту. Более того, эта двойственность характерна не только для фотонов. В то время электроны считали нормальными, ведущими себя как полагается частицами, делая скидку лишь на то, что они занимают определенные энергетические уровни в атомах. Но де

Бройль понял, что факт существования электрона только на «орбитах», определяемых целыми числами, является волновым свойством. «Целые числа появляются в физике только при описании двух явлений: интерференции и нормальных колебательных мод, – писал он в диссертации. – Этот факт навел меня на мысль, что электроны тоже не могут рассматриваться лишь как частицы и у них присутствует периодичность».

«Нормальные колебательные моды» – это просто колебания, которые производят ноты на струне скрипки или звуковая волна в трубе органа. Например, сильно натянутая струна может колебаться таким образом, что каждый ее конец зафиксирован, а середина дергается туда-сюда. Стоит прикоснуться к центру струны, и каждая половина будет колебаться таким же образом, а центр покоиться – и эта более высокая «мода» колебаний соответствует также более высокой ноте, гармонике полной струны, к которой не прикасаются. В первой моде длина волны в два раза больше, чем во второй, и более высокие моды колебаний, соответствующие более высоким нотам, могут поместиться на колеблющейся струне, однако при этом длина струны должна всегда содержать целое число длин волн (1, 2, 3, 4 и т. д.). Только некоторые волны, имеющие определенные частоты, могут распространяться по струне.

Это и в самом деле аналогично тому, как электроны «помещаются» в атомах, находясь в состояниях, соответствующих квантово-энергетическим уровням 1, 2, 3, 4 и так далее. Вместо натянутой струны вообразите, что струна согнута в круг, «орбиту» вокруг атома. Стоячая волна может спокойно распространяться по такой струне, если длина окружности равняется целому числу длин волн. Любая волна, которая неточно «помещается» на струне, является нестабильной и разрушается, интерферируя сама с собой. Голова змеи всегда должна схватить ее хвост – или струна, следуя аналогии, распадется. Может ли это объяснить квантование энергетических уровней атома, когда каждый из них соответствует резонирующей волне электрона определенной частоты? Как и многие другие аналогии, основанные на атоме Бора – впрочем, как и на всех физических изображениях атома, – этот образ далек от истины, но помогает лучше понять квантовый мир.

 

Волны электронов

 

Де Бройль представил волны связанными  с частицами и предположил, что частица, подобная фотону, на самом деле ведется волной, неразрывно связанной с ней. В результате было получено подробное математическое описание поведения света, которое включает в себя свидетельства как волновых, так и корпускулярных экспериментов. Ученым, изучавшим диссертацию де Бройля, понравилась ее математическая часть, но они не поверили в предположение, что волна, связанная с частицей, подобной электрону, может иметь физический смысл – это они посчитали математической уловкой. Де Бройль не был согласен. Когда один из ученых спросил его, может ли быть проведен эксперимент, чтобы зафиксировать волны материи, он ответил, что это станет возможным, если провести дифракцию пучка электронов на кристалле. Этот эксперимент подобен дифракции света, но не на двух прорезях, а на их массиве, когда промежутки между регулярно расположенными атомами в кристалле дают массив «прорезей», достаточно узких, чтобы высокочастотные волны электронов (с маленькой длиной волны по сравнению со светом или даже рентгеновскими лучами) могли дифрагировать.

Де Бройль знал, какой должна быть правильная длина волны, поскольку, используя два уравнения Эйнштейна, получил очень простое выражение р = hv/c,  с которым мы уже сталкивались ранее. Поскольку длина волны связана с частотой выражением λ = c/v, то ρλ = h, или – простыми словами – импульс, умноженный на длину волны, дает постоянную Планка. Чем меньше длина волны, тем больше импульс соответствующей частицы, что делает электроны с их маленькой массой и, соответственно, маленьким импульсом наиболее «волноподобными» частицами из известных в то время. Как и в случае со светом или волнами на поверхности моря, дифракционные эффекты проявляют себя только тогда, когда волна проходит через отверстие, гораздо меньшее, чем длина волны, а для волн электронов это означает действительно очень маленькое отверстие – порядка расстояния между атомами в кристалле.

Де Бройль не знал лишь того, что эффекты, которые можно объяснить дифракцией электронов, наблюдали еще в 1914 году, когда пучки электронов использовались для исследования кристаллов. Два американских физика Клинтон Дэвиссон и его коллега Чарльз Кунсман действительно изучали это необычное поведение электронов, рассеивающихся на кристалле, в 1922 и 1923 годах, пока де Бройль формулировал свои идеи. Не зная об этом, де Бройль пытался убедить экспериментаторов провести опыт согласно гипотезе о волне электрона. Тем временем научный руководитель де Бройля Поль Ланжевен отправил копию его диссертации Эйнштейну, который едва ли удивился, усмотрев в ней гораздо большее, чем математическую уловку или аналогию, и понял, что волны материи должны существовать. В свою очередь он рассказал об этом Максу

Борну в Геттингене, где заведующий кафедрой экспериментальной физики Джеймс Франк сообщил, что эксперименты Дэвиссона «уже установили существование описываемого эффекта»![20]

Дэвиссон и Кунсман, как и другие физики, считали, что эффект рассеяния может быть вызван атомной структурой, которую бомбардируют электроны, но не природой самих электронов. В 1925 году студент Борна Уолтер Эльзассер опубликовал краткую заметку, в которой результаты этих экспериментов объяснялись с позиции волн электрона, но экспериментаторов не впечатлила эта интерпретация их данных, сделанная теоретиком, – особенно никому не известным двадцатиоднолетним студентом. Даже в 1925 году, несмотря на существование экспериментальных свидетельств, идея волн материи оставалась не более чем расплывчатой концепцией. Лишь когда Эрвин Шрёдингер выдвинул новую теорию атомной структуры, включающую в себя идею де Бройля, однако заходящую гораздо дальше нее, экспериментаторы ощутили острую необходимость проверить гипотезу о волне электрона, проведя опыты по дифракции. В 1927 году, по завершении работы, была доказана полная правота де Бройля: электроны дифрагируют на кристаллических решетках так, будто бы они являются волной. В 1927 году это открытие было сделано независимо двумя группами: Дэвиссоном с его новым коллегой Лестером Джермером в Соединенных Штатах и Джорджем Томсоном (сыном Дж. Дж.) с аспирантом Александром Рейдом в Англии (с использованием другой техники). Не приняв расчеты Эльзассера за чистую монету, Дэвиссон упустил свой шанс на единоличную славу и разделил врученную в 1937 году за независимые исследования 1927 года Нобелевскую премию с Томсоном. Но это, скорее, любопытная историческая справка, которую должен ценить даже Дэвиссон и которая прекрасно подытоживает основы развития квантовой теории.

В 1906 году Дж. Дж. Томсон получил Нобелевскую премию за доказательство того, что электроны являются частицами. В 1937 году он увидел, как его сын получил Нобелевскую премию за доказательство того, что электроны являются волнами. И отец, и сын были правы, и каждая из наград оказалась полностью заслуженна. Электроны – это частицы. Электроны – это волны. Начиная с 1928 года экспериментальных свидетельств в пользу корпускулярно-волнового дуализма де Бройля стало предостаточно. Последовательно было обнаружено, что другие частицы, в том числе протон и нейтрон[21], также обладают волновыми свойствами, включая дифракцию. В серии красивых экспериментов 1970-1980-х годов Тони Кляйн с коллегами из университета Мельбурна повторил ряд классических опытов, которые в XIX веке заложили основы волновой теории света, однако при этом использовал вместо пучка света пучок нейтронов.

 

Разрыв с прошлым

 

Полный разрыв с классической физикой приходит с осознанием того, что не только фотоны и электроны, но и все «частицы» и все «волны» являются в действительности смешением волн и частиц. Так сложилось, что в нашем повседневном мире в этой смеси почти полностью доминирует компонента частицы – в контексте, например, шара для боулинга или жилого дома. Волновой аспект все равно остается, согласно уравнению ρλ = h, хотя и является совершенно несущественным. В микроскопическом мире, где волновые и корпускулярные аспекты реальности являются одинаково значимыми, процессы протекают не так, как мы привыкли в обычной жизни. Дело не только в том, что атом Бора с его электронными «орбитами» является ложным. Любые представления ложны, и нельзя подобрать физическую аналогию, чтобы понять происходящее внутри атомов. Атомы ведут себя, как атомы, и никак иначе.

Сэр Артур Эддингтон блестяще подытожил ситуацию в своей книге «Природа физического мира», опубликованной в 1929 году. «К электрону нельзя привязать знакомые нам концепции», – сказал он, а лучшее описание атома сводится к фразе: «Что-то неизвестное делает нечто, чего мы не знаем». Он замечает, что это «не кажется особо ясной теорией. Я уже читал кое-что подобное:

 

Хливкие шорьки

Пырялись по наве».

 

Суть в том, что, хотя мы не знаем, что именно электроны делают внутри атомов, мы знаем, что важным является их число. Добавление нескольких чисел добавляет к «Бармаглоту» науку: «Восемь хливких шорьков пырялось по кислородной наве; семь – по азотной… если один из шорьков вылетит, кислород скроется под маской азота».

Это не шутливая ремарка. Если не менять числа, то, как более восьмидесяти лет назад указал Эддингтон, все фундаментальные основы физики можно перевести на язык «Бармаглота». Смысл не будет утрачен. Возможно, будет даже полезно разрушить инстинктивную ассоциацию с атомами, имеющими твердые сферы, и электронами в виде крошечных частиц. Особенно важным это кажется, когда приходишь в смятение, узнавая о свойстве электрона под названием «спин» (англ, вращение. – Примеч. пер .), которое не имеет ничего общего с вращением детской юлы или вращением Земли вокруг своей оси по мере ее продвижения вокруг Солнца.

Одна из загадок атомной спектроскопии, которую не смогла объяснить простая модель атома Бора, заключается в разделении спектральных линий, которые «должны» быть едиными, на близко расположенные мультиплеты. Поскольку каждая спектральная линия связана с переходом из одного энергетического состояния в другое, число линий в спектре показывает количество энергетических состояний в атоме – сколько «ступеней» существует на квантовой лестнице и насколько высока каждая. В начале 1920-х годов, исходя из данных изучения спектров, физики выдвинули несколько возможных объяснений мультиплетов. Лучшим стало объяснение Вольфганга Паули, которое требовало, чтобы у электрона было четыре различных квантовых числа. Оно появилось в 1924 году, когда физики еще считали электрон частицей и пытались объяснить его квантовые свойства методами, применяемыми в обычном мире. Три из этих чисел уже присутствовали в модели Бора, и считалось, что они описывают момент импульса электрона (скорость, с которой он движется по орбите), форму орбиты и ее ориентацию. Четвертое число должно было быть связано с каким-то другим свойством электрона, и, чтобы соответствовать наблюдаемому расщеплению спектральных линий, оно могло иметь только два значения.

Ученым потребовалось совсем немного времени, чтобы сообразить, что четвертое квантовое число Паули описывает «спин» электрона, который можно представить направленным либо вверх, либо вниз, что дает полноценное квантовое число с двумя возможными значениями. Первым об этом заявил Ральф Крониг – молодой физик, посетивший Европу, только закончив аспирантуру в Колумбийском университете[22]. Он выдвинул предположение, что электрон имеет собственный спин, равный 1/2 в естественных единицах (h/2π ), и этот спин может быть либо параллельным, либо анти-параллельным магнитному полю атома[23]. Паули, к собственному удивлению, противился этой идее во многом потому, что она не вязалась с представлением об электроне как о частице в рамках релятивистской теории. Как электрон на орбите вокруг ядра «не должен» быть стабильным согласно классической теории электромагнетизма, так и вращающийся электрон «не должен» быть стабильным согласно теории относительности. Возможно, Паули стоило быть более восприимчивым, но в итоге случилось так, что Крониг забросил идею, так и не опубликовав работу. Спустя почти год та же самая идея пришла в голову Джорджу Уленбеку и Сэмюэлу Гаудсмиту из Института теоретической физики в Лейдене. В конце 1925 года они опубликовали свое предположение в немецком журнале Die Naturwissenschaften, а в начале 1926-го – в журнале Nature.

Теория вращающего электрона вскоре была доработана и полностью объяснила загадочное расщепление спектральных линий. К марту 1926 года оказался убежден и сам Паули. Но что это такое – «спин»? При попытке объяснения обычным языком это понятие, как и многие другие квантовые понятия, ускользает. Например, одно «объяснение» гласит (и до поры до времени это верно), что вращение электрона отличается от вращения детской юлы, поскольку электрон должен обернуться дважды , чтобы вновь вернуться в исходное положение. К тому же, как вообще может «вращаться» электрон, если он в то же время является волной? Паули больше всех обрадовался, когда в 1932 году Бор смог установить, что спин электрона не может быть измерен в классическом эксперименте, например посредством отклонения пучка электронов в магнитном поле. Это свойство возникает только в квантовых взаимодействиях, подобных тем, что расщепляют спектральные линии, и не имеет никакого классического значения. Паули и его коллегам, пытавшимся в 1920-х годах объяснить природу атома, было бы значительно проще, если бы они говорили о «круговом вращении», а не об обычном «вращении».

Увы, теперь в язык вошло слово «спин» и вряд ли будет возможно изменить эту классическую терминологию в квантовой физике[24]. Теперь, если вас еще раз застанет врасплох знакомое слово, употребленное в незнакомом контексте, попробуйте подставить вместо него слово «бармаглот» – возможно, так термин уже не будет столь пугающим. Никто не понимает, что «действительно» происходит внутри атомов, но четыре квантовых числа Паули объясняют ряд важных свойств с позиции «шорьков», которые прекрасно чувствуют себя в «наве» разных типов.

 

Принцип исключения Паули

 

Вольфганг Паули был одним из самых выдающихся ученых из всех тех выдающихся ученых, которые стояли у истоков квантовой теории. Он родился в 1900 году в Вене и в 1918-м поступил в Мюнхенский университет. Там он сразу зарекомендовал себя в качестве одаренного математика и подготовил статью по общей теории относительности, которая заинтересовала Эйнштейна и была опубликована в январе 1919 года. Паули глотал физику на занятиях в университете и в Институте теоретической физики, а также занимался самообразованием. Он так хорошо понял теорию относительности, что в 1920 году ему дали задание написать подробный обзор этой темы для полной математической энциклопедии. Студент, которому исполнился всего двадцать один год, написал прекрасную статью, принесшую ему славу во всем научном сообществе, и его работа получила похвалу таких ученых, как Макс Борн. В 1921 году Паули стал ассистентом Борна, присоединившись к нему в Геттингене. Вскоре он переехал из Геттингена в Гамбург, а затем – в Институт Бора в Дании. Впрочем, Борн не ощутил всей тяжести потери, ведь его новый ассистент Вернер Гейзенберг был столь же одарен и тоже сыграл ключевую роль в развитии квантовой теории[25].

Еще в 1925 году, когда четвертое квантовое число Паули еще не получило названия «спин», он смог использовать четыре квантовых числа, чтобы разрешить одну из великих загадок атома Бора. В случае с водородом единственный электрон действительно оседает на самом низком энергетическом уровне, у подножия квантовой лестницы. Если он возбужден – например, столкновением, – он может перепрыгнуть на ступень выше, а затем упасть назад на основной уровень, испустив при этом квант излучения. Но когда в системе появляется большее количество электронов – у более тяжелых атомов, – не все они падают на основной уровень, вместо этого распределяясь по ступеням лестницы. Бор утверждал, что электроны находятся в «оболочках» вокруг ядра, причем «новые» электроны оседают на оболочке с наименьшим количеством энергии, пока она не заполнится, а затем оседают на следующей оболочке и так далее. Таким образом он объяснил периодическую систему и раскрыл множество химических тайн. Однако он не объяснил, как или почему оболочка становится заполненной: почему первая оболочка может содержать всего два электрона, а следующая – восемь и так далее.

Каждая из оболочек Бора соответствует набору квантовых чисел, и в 1925 году Паули понял, что с добавлением четвертого квантового числа для электрона количество электронов в каждой заполненной оболочке точно соответствует количеству различных наборов квантовых чисел, относящихся к этой оболочке. Он сформулировал закон, который теперь известен как принцип исключения Паули, гласивший, что не существует двух электронов с одинаковым набором квантовых чисел, и тем самым объяснил, как именно заполняются оболочки более и более тяжелых атомов.

Принцип исключения и открытие спина электрона опередили свое время и полностью вошли в новую физику только в конце 1920-х годов – когда сама эта новая физика была изобретена. Из-за стремительного развития физики в 1925 и 1926 годах важность принципа исключения иногда недооценивают, но на самом деле эта идея столь же фундаментальна и масштабна, как и теория относительности, и имеет широкое применение в физике. Принцип исключения Паули, как выяснилось, применим ко всем частицам с полуцелым значением спина – (1/2)ħ, (3/2) ħ, (5/2)ħ и так далее. Частицы, не обладающие спином или обладающие целым значением спина (ħ, 2ħ, 3ħ и т. д.), ведут себя совершенно иначе, следуя другим законам. Законы, которым подчиняются частицы с полуцелым значением спина, называются статистикой Ферми – Дирака в честь Энрико Ферми и Поля Дирака, которые вывели их в 1925–1926 годах. Такие частицы называются «фермионами». Законы, которым подчиняются частицы с целым значением спина, называются статистикой Бозе – Эйнштейна в честь ученых, которые вывели их, а соответственные частицы называются «бозонами».

Статистика Бозе – Эйнштейна была разработана в 1924–1925 годах, в то же время, когда на слуху были волны де Бройля, эффект Комптона и спин электрона. Эти законы стали последним великим вкладом Эйнштейна в квантовую теорию (и по сути его последней великой научной работой) и также ознаменовали собой полный разрыв с классическими идеями.

Сатьендра Нат Бозе родился в 1894 году в Калькутте и в 1924 году читал лекции по физике в недавно основанном Даккском университете. Следя издалека за работой Планка, Эйнштейна, Бора и Зоммерфельда и будучи в курсе несовершенства основы для закона Планка, он решил вывести закон излучения абсолютно черного тела по-новому, начав с предположения, что свет распространяется в виде фотонов, как их теперь называют. Он вывел закон очень просто, задействовав в своих расчетах не обладающие массой частицы, которые подчиняются определенной статистике, и послал копию своей работы, переведенной на английский, Эйнштейну, попросив того передать ее для публикации в Zeitschrift für Physik. Эйнштейна так впечатлила эта статья, что он сам перевел ее на немецкий и отправил со своей рекомендацией в журнал, настояв на публикации работы в августе 1924 года. Полностью отказавшись от идей классической теории и выведя закон Планка на основании комбинации световых квантов – фигурировавших в работе в качестве релятивистских частиц с нулевой массой – и статистических методов, Бозе наконец-то освободил квантовую теорию от классических корней. Излучение теперь можно было рассматривать как квантовый газ, а соответствующая статистика считала частицы, а не частоты волн.

Эйнштейн дальше развил эту статистику, применив ее к гипотетическому в то время скоплению атомов – газа или жидкости, – которые подчинялись тем же законам. Оказалось, что статистика эта неприменима к реальным газам при комнатной температуре, но точно описывает странные свойства сверхтекучего гелия – жидкости, охлажденной до температуры, близкой к абсолютному нолю, – 273 °C. В 1926 году появилась статистика Ферми – Дирака, и физикам понадобилось некоторое время, чтобы разобраться, какие законы были применимы в конкретном случае, и понять важность полуцелого значения спина.

Тонкости нас пока не интересуют, но различие между фермионами и бозонами относится к разряду важных, и понять его несложно. Несколько лет назад я пошел на спектакль с участием комика Спайка Миллигана. Занавес еще не поднялся, но вдруг этот великий актер вышел на сцену и печально посмотрел на несколько пустых мест в самых дорогих первых рядах зала. «Теперь им уже не продать эти билеты, – сказал он. – Пересаживайтесь вперед, чтобы я мог рассмотреть ваши лица». Зрители последовали его совету: все передвинулись вперед и заняли места перед сценой, оставив лишь несколько пустых кресел в дальней части зала. Мы повели себя, как прекрасные, хорошо воспитанные фермионы: каждый человек занял одно место (одно квантовое состояние), заполнив все ряды, начиная с самого желанного «основного уровня» возле сцены.

Иным образом повели себя зрители на концерте Брюса Спрингстина. Там не было свободных мест, но между первым рядом сидений и сценой оставался небольшой промежуток. Когда зажглись прожекторы и группа взяла первый аккорд песни «Born to Run», весь зал вскочил с мест и устремился к сцене. Все «частицы» оккупировали один и тот же «энергетический уровень» – в этом и заключается разница между фермионами и бозонами. Фермионы подчиняются принципу исключения, а бозоны – нет.

Все привычные нам «материальные» частицы – электроны, протоны и нейтроны – являются фермионами, и без принципа исключения не существовало бы того разнообразия химических элементов и их свойств, которое лежит в основе нашего физического мира. Бозонами являются более трудноуловимые частицы вроде фотонов, и закон излучения абсолютно черного тела – это прямой результат того, что все фотоны пытаются попасть на единственный энергетический уровень. Атомы гелия могут при определенных условиях вести себя, как бозоны, и становиться сверхтекучими, поскольку каждый атом не содержит два протона и два нейтрона и их полуцелые значения спина распределены таким образом, чтобы в итоге получался ноль. Кроме того, количество фермионов зафиксировано взаимодействием между частицами – невозможно увеличить общее число электронов во Вселенной, – в то время как бозоны, как известно любому, кто хоть раз включал свет, можно производить в больших объемах.

 

Куда дальше?

 

Хотя сейчас квантовая теория кажется нам стройной и аккуратной, в 1925 году она представляла собой настоящий хаос. Не было никакого единого движения к прогрессу: вместо этого каждый из ученых продирался своей тропой через джунгли. Ведущие исследователи прекрасно понимали это и открыто выражали свои опасения, но большой скачок был еще впереди, и его предстояло совершить, за единственным исключением, новому поколению, которое пришло в науку после Первой мировой войны и было – возможно, как следствие этого – открыто новым идеям. В 1924 году Макс Борн заметил, что «в настоящий момент существует только несколько расплывчатых намеков» о том, каким образом следует изменить классические законы, чтобы объяснить атомные свойства, и в своей книге по атомной теории, опубликованной в 1925 году, пообещал выход второго тома, который бы завершил описание и который, по его мнению, «еще несколько лет не мог быть написан»[26].

В начале 1923 года после неудачной попытки рассчитать структуру атома гелия Гейзенберг сказал Паули: «Вот это загадка!» Паули повторил эту фразу в письме Зоммерфельду, написанном в июле того же года: «Теория… для атомов, имеющих больше одного электрона, представляется великой загадкой». В мае 1925 года Паули написал Кронигу, что «в настоящий момент физики опять сбиты с толку», ведь к 1925 году даже сам Бор оказался подавлен из-за множества проблем, окружавших его модель атома. Только в конце 1926 года Вильгельм Вин, закон излучения абсолютно черного тела которого стал одним из трамплинов для прыжка в неизвестность, совершенного Планком, написал Шрёдингеру о «болоте полных и частичных квантовых разрывов и беспорядочном использовании классической теории». Все именитые ученые, занимавшиеся квантовой теорией, были осведомлены об этой проблеме – и все именитые ученые, занимавшиеся квантовой теорией, за исключением одного, в 1925 году были еще живы (исключением был Анри Пуанкаре; Лоренц, Планк, Дж. Дж. Томсон, Бор, Эйнштейн и Борн еще были в расцвете сил, в то время как Паули, Гейзенберг, Дирак и другие уже готовились внести свой вклад в науку). Светилами оставались Эйнштейн и Бор, но к 1925 году они значительно разошлись в своих научных взглядах. Сперва Бор был одним из главных сторонников светового кванта, затем, когда Эйнштейн заинтересовался значением вероятности для квантовой теории, Бор принялся изучать его. Статистические методы (по иронии судьбы, предложенные Эйнштейном) стали краеугольным камнем квантовой теории, но уже в 1920 году Эйнштейн написал Борну: «Проблема причинности тоже не дает мне покоя… Должен признать… моим суждениям не хватает смелости». Диалог между Эйнштейном и Бором на эту тему продолжался в течение тридцати пяти лет, до самой смерти Эйнштейна[27].

Макс Джеммер описывает ситуацию, сложившуюся в начале 1925 года, как «досадное смешение гипотез, принципов, теорем и механизмов расчета»[28]. Любую проблему квантовой механики сначала полагалось «решать» с использованием классической физики, после чего это решение необходимо было переделывать, осмотрительно вводя в него квантовые числа и в большей степени полагаясь на счастливую догадку, чем на холодный расчет. Квантовую теорию нельзя было назвать ни независимой, ни логически цельной: она напоминала паразита на теле классической физики, экзотический цветок без корней. Нечего удивляться, что Борн полагал, будто пройдут годы, прежде чем он сможет написать второй, заключительный том своей книги об атомной физике. И все же, словно бы в дополнение ко всей странности истории квантовой науки, прошло всего несколько месяцев с сумбурного начала 1925 года, как пораженному научному сообществу представили не одну, а целых две полных, независимых, логичных и прекрасно обоснованных квантовых теории.

 

 

Глава шестая

Матрицы и волны

 

Вернер Гейзенберг родился в Вюрцбурге 5 декабря 1901 года. В 1920 году он поступил в Мюнхенский университет, где изучал физику под руководством Арнольда Зоммерфельда, который был одним из ведущих физиков своего времени и принимал деятельное участие в развитии модели атома Бора. Гейзенберг сразу же погрузился в исследования по квантовой теории и поставил себе задачу найти квантовые числа, которые могли бы объяснить расщепление спектральных линий на пары или дублеты. За несколько недель он нашел ответ – весь процесс можно объяснить, используя полуцелые квантовые числа. Молодой студент, у которого не было предубеждений, нашел самое простое решение проблемы, однако его коллеги и учитель Зоммерфельд пришли от этого в ужас. Зоммерфельд был погружен в модель Бора, и для него целые квантовые числа были аксиомой, поэтому он быстро отверг идеи молодого студента. Страх ученых заключался в том, что, если ввести в уравнения полуцелые значения, это откроет путь к четвертичным, затем к 1/8, 1/16 или так далее, что уничтожит фундамент квантовой теории. Но они ошибались.

Через несколько месяцев взрослый и более опытный физик Альфред Ланде выдвинул ту же идею и опубликовал ее. Позже выяснилось, что полуцелые квантовые числа исключительно важны для полноценной квантовой теории и играют ключевую роль в описании спина электрона. Частицы, имеющие целый или нулевой спин (например, фотоны), подчиняются статистике Бозе – Эйнштейна, тогда как имеющие полуцелый спин (1/2, 3/2 и так далее) подчиняются статистике Ферми – Дирака. Полуцелый спин электрона напрямую связан со структурой атома и Периодической таблицей химических элементов. Верным остается то, что квантовые числа изменяются только на целое число, но переход от 1/2 к 3/2 или от 5/2 к 9/2 настолько же допустим, как и переход от 1 к 2 или от 7 к 12. Таким образом Гейзенберг упустил шанс записать на свое имя эту идею в квантовой теории, однако суть в том, что молодые умы, необходимые при создании квантовой теории, в 1920-х потребовались вновь, ведь молодые люди не были отягощены «всем известными» существующими представлениями и готовы были сделать следующий шаг вперед. Гейзенберг, разумеется, впоследствии реабилитировал себя.

Проработав семестр под руководством Борна в Геттингене, где он посетил знаменитый «Фестиваль Бора», Гейзенберг вернулся в Мюнхен и в 1923 году, когда ему не было еще и двадцати двух, получил докторскую степень. Так же не по годам развитый бывший ученик Зоммерфельда и близкий друг Гейзенберга Вольфганг Паули в то время как раз дорабатывал последние месяцы в качестве ассистента Бора в Геттингене, и в 1924 году Гейзенберг сменил его на этом посту. Эта позиция дала ему возможность несколько месяцев поработать с Бором в Копенгагене, и к 1925 году этот талантливый физик стал больше, чем кто-либо, способен разработать логичную квантовую теорию, которой так ждали физики – хоть и не в такие сжатые сроки.

Прорыв Гейзенберга был основан на идее, заимствованной у научной группы в Геттингене, – никто теперь не знает, кто выдвинул ее первым. В соответствии с ней физическая теория должна рассматривать лишь то, что можно наблюдать экспериментально. Идея может показаться банальной, но при этом она является прорывной. Например, опыт «наблюдения» за электронами в атоме не дает нам картину маленьких твердых шариков, вращающихся вокруг ядра, ведь невозможно увидеть орбиту, а наблюдения спектральных линий показывают нам, что происходит с электронами, когда они переходят с одного энергетического уровня (или, говоря словами Бора, орбиты) на другой. Все наблюдаемые свойства электронов и атомов показывают два состояния, и понятие орбиты по сути приклеено к наблюдениям посредством аналогии с тем, как происходит движение в повседневном мире (вспомните о хливких шорьках). Гейзенберг избавился от сумятицы повседневных аналогий и принялся упорно работать над математическим описанием не одного «состояния» атома или электрона, а связей между парами состояний.

 

Прорыв в Гельголанде

 

Часто рассказывают о том, что в мае 1925 года Гейзенберга поразил сильный приступ аллергии, из-за чего он отправился на скалистый остров Гельголанд, чтобы восстановить свои силы. Там он досконально проанализировал с этих позиций все, что было известно о поведении квантов. На острове Гейзенберга ничего не отвлекало, и, после того как аллергия прошла, он смог погрузиться в эту проблему. В своей автобиографической книге «Физика и не только» он описал свои чувства в тот момент, когда числа начали занимать свое место, и рассказал, что однажды в три часа ночи он «больше не смог усомниться в математической цельности и логичности той квантовой механики, на которую указывали [его] расчеты». Он пишет: «Сперва я пришел в возбуждение. У меня возникло такое чувство, словно через призму атомных феноменов я смотрел на их удивительно прекрасную глубину. У меня едва не кружилась голова от того, что теперь мне нужно было исследовать это богатство математических структур, которое так щедро открыла мне природа».

Вернувшись в Геттинген, Гейзенберг три недели готовил свою работу, приводя ее в формат, пригодный для публикации. В первую очередь он отправил ее копию своему старому другу Паули, спросив его, имело ли все это какой-то смысл. Паули встретил статью восторженно, но Гейзенберг был измотан своими исследованиями и сомневался, готова ли работа к публикации. В июле 1925 года он оставил работу Борну, позволив тому распорядиться ею на собственное усмотрение, и отправился дать серию лекций в Лейдене и Кембридже. По иронии судьбы там он решил не рассказывать слушателям о своих новых открытиях, и ученым пришлось ждать, пока новости дойдут до них по старым каналам.

 

Рис. 6.1. Каждую клетку шахматной доски можно обозначить комбинацией буквы и цифры, например b4 или f7. Квантовомеханические состояния также определяются парами чисел.

 

Рис. 6.2. «Состояние» каждой из клеток шахматной доски определяется шахматной фигурой, которая занимает эту клетку. На этом рисунке пешка обозначена как 1, ладья – как 2 и так далее. Положительные числа – это белые фигуры, отрицательные – черные. Изменение состояния всей доски можно описать фразой вроде «пешка на четверку ферзя» или алгебраическим выражением е2 – е4. Квантовые переходы описываются таким же выражением, связывающим парные (начальное и конечное) состояния. Ни в том, ни в другом случае мы не получаем никакой информации о том, как именно происходит переход из одного состояния в другое, – взгляните хотя бы на движение коня по доске или на рокировку. Продолжая аналогию с шахматами, мы можем представить минимально возможное изменение на доске, е2 – е3, соответствующим добавлению одного кванта энергии hv, в то время как «переход» е3 – е2 будет соответствовать испусканию такого же кванта энергии. Аналогия эта неточна, но она показывает, как по-разному можно передать на письме одно и то же событие. Гейзенберг, Дирак и Шрёдингер таким же образом обнаружили различные формы математической записи для описания одних и тех же квантовых событий.

 

Борну статья понравилась, и он отправил ее в Zeitschrift für Physik, практически немедленно осознав, на что натолкнулся Гейзенберг. Математические расчеты, в которых задействованы два состояния атома, невозможно проводить с обычными числами – для них необходимы массивы чисел, которые Гейзенберг представил в форме таблиц. Здесь лучше всего провести аналогию с шахматной доской. На доске 64 клетки, то есть каждую из них можно обозначить числом от 1 до 64. Однако шахматисты предпочитают использовать другую схему, обозначая «столбцы» клеток буквами а, b, с, d, е, f, g, h, а «строки» – цифрами 1, 2, 3, 4, 5, 6, 7, 8. Таким образом каждая из клеток на доске может быть обозначена уникальной парой идентификаторов: а1 – это начальная клетка ладьи, g2 – начальная клетка коневой пешки и так далее. Таблицы Гейзенберга, как шахматная доска, представляли собой двумерные массивы чисел, поскольку его расчеты были основаны на двух состояниях атомов и их взаимодействии. Эти расчеты предполагали, помимо прочего, перемножение двух таких наборов чисел, или массивов, и Гейзенберг старательно определил верные математические способы для этого. Но результат получился очень любопытным и столь загадочным, что он стал одной из причин, по которым Гейзенберг сомневался, стоит ли публиковать свои расчеты. При перемножении массивов получается «ответ», который зависит от того, в каком порядке осуществляется перемножение.

Это очень странно. Это все равно что сказать, что 2 × 3 не равняется 3 × 2, или, говоря алгебраически, a × b  ≠ b × a . Борн день и ночь размышлял об этой особенности, уверенный, что за ней скрывалось что-то фундаментальное. Неожиданно его озарило. Математические массивы и таблицы чисел, столь усердно составленные Гейзенбергом, уже были известны в математике. Существовали все расчеты для таких чисел – они назывались матрицами, и Борн изучал их в самом начале XX века, когда учился в Бреслау. Неудивительно, что более двадцати лет спустя он вспомнил об этой туманной ветви математической науки, ведь матрицы обладают одним свойством, которое всегда производит неизгладимое впечатление на студентов, впервые сталкивающихся с ними: получаемый при перемножении матриц результат зависит от порядка, в котором осуществляется перемножение, или, говоря математическим языком, матрицы не коммутируют.

 

Квантовая математика

 

Летом 1925 года, работая с Паскуалем Йорданом, Борн развил основы того, что сейчас называется матричной механикой. Вернувшись в сентябре в Копенгаген, Гейзенберг издалека присоединился к ученым, и в письмах они приступили к созданию исчерпывающей научной работы по квантовой механике. В этой работе, гораздо более ясной и наглядной, чем первая статья Гейзенберга, три автора подчеркнули фундаментальную важность некоммутативности квантовых переменных. В совместной работе с Йорданом Борн уже вывел равенство pq  – qp  = ħ/i , где p  и q  – это матрицы, представляющие собой квантовые переменные, квантовый эквивалент импульса и положения. Постоянная Планка фигурировала в новом уравнении вместе с ί, квадратным корнем из минус единицы. В работе, которая стала известна как «статья трех», команда из Геттингена обратила внимание на то, что это «фундаментальное квантово-механическое равенство». Но что это значило с точки зрения физики? Постоянная Планка к этому времени была уже достаточно знакома ученым, как и уравнения с участием ί (в которых уже содержался намек на будущее, ведь такие уравнения обычно включали в себя колебания, или волны). Но матрицы в 1925 году были совершенно незнакомы большинству математиков и физиков, а потому некоммутативности казалась им столь же странной, сколь странной казалась постоянная Планка их предшественникам в 1900 году. Для тех, кто мог разобраться с математикой, результаты были поразительными. Ньютонианская механика уступила место похожим уравнениям, в которых были задействованы матрицы, и, как выразился Гейзенберг: «Было очень странно выяснить, что многие старые следствия ньютонианской механики вроде сохранения энергии и т. n. можно было вывести и с применением новой схемы»[29]. Другими словами, матричная механика включала в себя ньютонианскую механику точно так же, как уравнения теории относительности Эйнштейна в качестве особого случая включали в себя ньюто-нианские уравнения. К сожалению, с математикой разобрались немногие, и большинство физиков не сразу осознало, насколько значительный прорыв совершил Гейзенберг вместе с геттингенской группой. Однако не обошлось и без исключения, которое обнаружилось в английском Кембридже.

Поль Дирак был на несколько месяцев младше Гейзенберга; он родился 8 августа 1902 года. Обычно его считают единственным английским теоретиком масштабов Ньютона, ведь именно он разработал самую полную форму науки, которая теперь называется квантовой механикой. И все же он обратился к теоретической физике только после того, как в 1921 году окончил Бристольский университет, получив диплом инженера. Дирак не смог сразу найти работу по специальности, и ему предложили поступить в Кембридж, чтобы изучать математику, но от этого предложения он вынужден был отказаться из-за нехватки денег. Оставшись с родителями в Бристоле, он – благодаря инженерному образованию – освоил трехлетний математический курс всего за два года и в 1923 году стал бакалавром прикладной математики. Теперь он наконец-то мог отправиться в Кембридж и заняться исследованиями, получив грант от Отдела научных и промышленных исследований, – и только прибыв в Кембридж, он впервые услышал о квантовой теории.

Итак, в июле 1925 года, когда Дирак попал на лекцию Гейзенберга в Кембридже, он был никому не известным и неопытным аспирантом. Хотя Гейзенберг тогда не рассказал аудитории о своей работе, он упомянул о ней в разговоре с научным руководителем Дирака Ральфом Фаулером и в итоге в середине августа послал ему копию статьи, до того как она вышла на страницах Zeitschrift für Physik. Фаулер передал статью Дираку, который первым ознакомился с ней за пределами Геттингена (не считая друга Гейзенберга Паули), получив шанс изучить новую теорию. В этой первой статье Гейзенберг хотя и указал на некоммутативность переменных в квантовой механике, то есть матриц, не развил свою идею, ходя вокруг да около. Разобравшись с уравнениями, Дирак быстро оценил фундаментальное значение простого факта, что a × b  ≠ b × a . В отличие от Гейзенберга, Дирак уже знал математические величины, которые вели себя таким образом, и за несколько недель смог переработать уравнения Гейзенберга с позиции той ветви математики, которую за век до этого развил Уильям Гамильтон. По величайшей иронии научной судьбы уравнения Гамильтона, нашедшие свое применение в квантовой теории, отказавшейся от концепции орбит электронов, в XIX веке были выведены в значительной степени для того, чтобы использоваться при расчете орбит тел в системе – например, в Солнечной системе, где находится несколько взаимодействующих друг с другом планет.

Итак, отдельно от геттингенской группы Дирак открыл, что уравнения квантовой механики имеют ту же математическую структуру, что и уравнения классической механики, и что классическая механика является частным случаем квантовой и соответствует большим квантовым числам или постоянной Планка, равной нулю. Следуя в собственном направлении, Дирак нашел другой путь математического выражения динамики с использованием особой формы алгебры, которую он назвал квантовой алгеброй, предполагающей сложение и перемножение квантовых переменных, или «чисел q». Эти числа q представляют собой странные величины – не в последнюю очередь потому, что в математическом мире, построенном Дираком, невозможно сказать, какое из двух чисел а и b  больше: идея о том, что одно из чисел должно быть больше или меньше другого, просто не находит себе места в этой алгебре. И все же законы этой математической системы в точности соответствовали наблюдениям за атомными процессами. И снова верным будет сказать, что квантовая алгебра включает в себя матричную механику, но отвечает помимо нее за многое другое.

Фаулер сразу же понял значение работы Дирака, и в декабре 1925 года по его настоянию ее опубликовали в сборнике Proceedings of the Royal Society. Помимо прочего, в нее в качестве неотъемлемого компонента новой теории вошли полуцелые значения квантовых чисел, которые несколькими годами ранее не давали покоя Гейзенбергу. Дирак отправил копию работы Гейзенбергу, и тот не скупился на похвалы: «Я с огромным интересом прочитал вашу невероятно прекрасную статью по квантовой механике. Нет никаких сомнений в том, что ваши результаты верны… [Эта статья], несомненно, написана лучше и является более полной, чем наши изыскания»[30]. В первой половине 1926 года Дирак развил свою теорию в четырех исчерпывающих статьях, и все вместе они стали основой его докторской работы, за которую он и получил заслуженную степень. В то же время Паули использовал матричные методы, чтобы точно предсказать серию Бальмера для атома водорода, и к концу 1925 года стало очевидно, что разделение некоторых спектральных линий на дублеты получало лучшее объяснение при добавлении электрону нового свойства, называемого спином. Кусочки мозаики встали на свои места: различные математические средства, использованные разными толкователями матричной механики, явно представляли собой всего лишь различные аспекты одной и той же реальности[31].

И снова здесь могут помочь шахматы. Есть несколько способов описать шахматную партию на бумаге. Первый – напечатать наглядную «шахматную доску» с обозначенными позициями всех фигур, но для записи всей партии понадобится очень много места. Второй – называть передвигаемые фигуры: «Королевская пешка на четверку королевской пешки». А в самой краткой алгебраической записи тот же самый ход фиксируется как «d2 – d4». Три разных описания снабжают нас одинаковой информацией о случившемся в реальном мире событии – переходе пешки из одного «состояния» в другое (и, как и в квантовом мире, мы ничего не знаем о том, как именно пешка переходит из одного состояния в другое, – это еще более очевидно в случае с движением коня). Разные формулировки квантовой механики подобны этому. Квантовая алгебра Дирака стала самой изящной и «красивой» с математической точки зрения, в то время как матричные методы, развитые Борном и его коллегами вслед за Гейзенбергом, более громоздки, но от этого не менее эффективны[32].

Некоторые из наиболее поразительных ранних результатов Дирака появились тогда, когда он попытался включить в свою квантовую механику специальную теорию относительности. Вполне довольный идеей о том, что свет распространяется в виде частиц (фотонов), Дирак с радостью обнаружил, что, включая в свои уравнения, помимо прочего, время в качестве числа q, он неизбежно приходил к «предсказанию», что атом должен отскакивать в сторону, испуская свет, как будто бы свет распространялся в форме частиц, имеющих собственный импульс. Таким образом он разработал квантово-механическое толкование эффекта Комптона. Расчеты Дирака делились на две части: численные манипуляции с числами q и толкование уравнений с позиции того, что можно наблюдать физически. Этот процесс идеально соответствует тому, как природа, казалось бы, «делает расчет», а затем дает нам наблюдаемое явление – скажем, переход электрона, – но, к сожалению, вместо того чтобы полностью развить эту идею, после 1926 года физики отвлеклись от квантовой алгебры, так как их вниманием завладело открытие еще одного математического метода, который мог разрешить давние проблемы квантовой теории, – волновой механики. Матричная механика и квантовая алгебра отталкивались от представления об электроне как о частице, совершающей переход из одного квантового состояния в другое. Но что насчет предположения де Бройля о том, что электроны, как и другие частицы, нужно рассматривать и как волны?

 

Теория Шрёдингера

 

В те дни, когда матричная механика и квантовая алгебра совершали свой относительно негромкий дебют на научной сцене, в сфере квантовой теории происходило еще множество всего интересного. Казалось, европейская наука бурлила от идей, для которых настало подходящее время: тут и там появлялись всевозможные концепции, всплывавшие не всегда в логичном порядке и зачастую «открываемые» одновременно разными учеными. К концу 1925 года уже появилась теория де Бройля о волнах электрона, но окончательные эксперименты, которые бы доказали волновую природу электрона, еще не были проведены. Независимо от работы Гейзенберга и его коллег это привело к другому открытию – квантовой математике, основанной на волновой идее.

Эта идея исходила от де Бройля через Эйнштейна. Работа де Бройля могла годами оставаться незамеченной – ее бы считали не более чем интересным математическим трюком, не имеющим под собой физического основания, – если бы на нее не обратил внимания Эйнштейн. Именно Эйнштейн рассказал об этой идее Борну и тем самым запустил экспериментальную работу, которая доказала реальность волн электрона. Именно в одной из статей Эйнштейна, опубликованной в феврале 1925 года, Эрвин Шрёдингер прочитал отзыв ученого о работе де Бройля: «Уверен, это не просто аналогия». В то время физики внимали каждому слову Эйнштейна, и упоминания идеи де Бройля в статье этого великого человека Шрёдингеру хватило для того, чтобы начать исследование с целью выявить следствия принятия ее на веру.

Шрёдингер выделялся из физиков, стоявших у истоков новой квантовой теории. Он родился в 1887 году и внес свой главный вклад в науку в возрасте тридцати девяти лет – весьма солидном для оригинального научного исследования такой значимости. Он получил докторскую степень еще в 1910 году и с 1921-го был профессором физики в Цюрихе – университете, который считался оплотом научных приличий и вовсе не был похож на колыбель новых революционных идей. Но, как мы увидим, суть его вклада в квантовую теорию была как раз ожидаема в середине 1920-х годов от представителя старшего поколения. В то время как геттингенская группа, а еще в большей степени Дирак сделали квантовую теорию более абстрактной и освободили ее от повседневных физических идей, Шрёдингер попытался восстановить понятные физические концепции, объяснив квантовую физику с позиции волн, которые знакомы нам из окружающего мира. До конца жизни он боролся с новыми идеями о неопределенности и мгновенном перемещении электронов из одного состояния в другое. Он дал физике бесценный инструмент для решения проблем, но в концептуальном отношении его волновая механика стала шагом назад, возвращением к идеям XIX века.

Де Бройль указал направление, предположив, что «орбиты» электронов вокруг ядра атома должны вмещать целое число длины волны электрона в каждую орбиту, а потому промежуточные орбиты «запрещены». Шрёдингер использовал математику волн, чтобы рассчитать энергетические уровни, разрешенные в такой ситуации, и сначала, к своему неудовольствию, получил результат, который не соответствовал известным паттернам атомного спектра. На самом деле он действовал правильно: единственной причиной его первой неудачи стало то, что он не учел спин электрона, что вряд ли удивительно, ведь в те дни 1925 года концепция спина еще не была предложена. Шрёдингер вернулся к своей идее, когда его попросили провести коллоквиум для разъяснения работы де Бройля, и именно тогда он понял, что если выбросить из расчетов релятивистские эффекты, получается ответ, который прекрасно соответствует наблюдениям за атомами в тех ситуациях, где релятивистские эффекты не представляют особой важности. Как впоследствии показал Дирак, спин электрона – это по сути своей релятивистское свойство (которое не имеет ничего общего с вращением объектов в привычном нам мире). Таким образом, великий вклад Шрёдингера в квантовую теорию был опубликован в 1926 году в качестве серии статей, вышедших вслед за работами Гейзенберга, Борна и Йордана, а также Дирака.

Уравнения в вариации Шрёдингера на квантовую тему принадлежат к той же семье уравнений, которые описывают реальные волны в обычном мире – волны на поверхности океана или звуковые волны, которые разносят звук в атмосфере. Мир физики встретил их с энтузиазмом, особенно потому, что они казались знакомыми и очень удобными. Два подхода к решению одной и той же проблемы были диаметрально противоположны. Гейзенберг умышленно отказался от любой картины атома и работал только с величинами, которые можно было измерить экспериментальным путем, однако в основе его теории лежала идея, что электроны являются частицами. Шрёдингер оттолкнулся от ясной физической картины атома как «реальной» сущности, положив в основу своей теории идею о том, что электроны являются волнами. Каждый из подходов привел к появлению набора уравнений, точно описывающих поведение вещей, которые подлежат измерению в квантовом мире.

На первый взгляд, это было поразительно. Вскоре сам Шрёдингер, американец Карл Эккарт, а затем и Дирак математически доказали, что разные наборы уравнений фактически были эквивалентны друг другу, представляя собой разные взгляды на один и тот же математический мир. Уравнения Шрёдингера включали в себя и некоммутативность, и ключевой фактор h/v по сути в том же виде, в котором они фигурируют в матричной механике и квантовой алгебре. Когда было открыто, что разные подходы к проблеме были математически эквивалентны друг другу, уверенность физиков в каждом из них возросла. Казалось, что, какие математические формулы ни используй, сталкиваясь с фундаментальными проблемами квантовой механики, ты неизбежно приходишь к одинаковым «ответам». Говоря математически, вариация Дирака является наиболее полной, так как квантовая алгебра в качестве особых случаев включает в себя и матричную механику, и волновую механику. Однако физики 1920-х годов вполне ожидаемо предпочли использовать самую знакомую им версию уравнений, волны Шрёдингера, которые они понимали с позиций обычного мира. Эти уравнения были знакомы им из задач повседневной физики – из оптики, гидродинамики и тому подобных областей. Но сам успех версии Шрёдингера, возможно, отбросил все фундаментальное понимание квантового мира на несколько десятилетий назад.

 

Шаг назад

 

Оглядываясь в прошлое, не перестаешь удивляться тому, что Дирак не открыл (или не изобрел) волновую механику, поскольку сами уравнения Гамильтона, оказавшиеся столь полезными в квантовой механике, восходят к попыткам объединить волновые и корпускулярные теории света в XIX веке. Сэр Уильям Гамильтон родился в 1805 году в Дублине и считается многими одним из величайших математиков своего времени. Самым большим его достижением (хотя так не считали в то время) стало объединение законов оптики и динамики в один математический аппарат, в одну систему уравнений, которую можно использовать для описания как распространения волн, так и движения частиц. Эти работы были опубликованы в конце 1820-х и начале 1830-х годов, и оба подхода были подхвачены другими учеными. Во второй половине XIX века механика и оптика занимали ученых, но вряд ли хоть кто-то обратил внимание на объединенную механико-оптическую систему, которая представляла особенный интерес для Гамильтона. Явное следствие работы Гамильтона заключается в том, что точно так же, как «лучи» света должны замещаться концепцией волн в оптике, следы частиц должны замещаться волновыми движениями в механике. Но эта идея была столь чужда физикам XIX века, что никто – даже Гамильтон – не выразил ее. Не то чтобы она была высказана и отвергнута как абсурдная – она была в буквальном смысле слишком странной, чтобы вообще прийти кому-нибудь в голову. Ни один физик XIX века просто не мог прийти к такому выводу: эта идея могла появиться только тогда, когда неизбежно оказалась бы доказана неприменимость классической механики к описанию атомных процессов. Но не забывая о том, что именно он изобрел ту форму математики, в которой a × b ≠ b × a, не будет преувеличением сказать, что сэр Уильям Гамильтон, хоть это и было позабыто, стоял у истоков квантовой механики. Живи он дольше, он бы быстро заметил связь матричной механики с волновой. Дирак сделал это, но не стоит удивляться, что сначала он упустил эту связь. В конце концов, он был просто студентом, с головой погруженным в свое первое серьезное исследование, а возможности одного человека как-никак ограниченны. Возможно, гораздо важнее тот факт, что он работал с абстрактными идеями и, отталкиваясь от попытки Гейзенберга освободить квантовую физику от привычного представления об электронах, вращающихся на орбитах вокруг ядра атома, он не ожидал найти прекрасную, интуитивно понятную физическую картину атома. Ученые, однако, не сразу поняли, что и волновая механика, вопреки ожиданиям Шрёдингера, не снабдила физиков такой прекрасной картиной.

Шрёдингер полагал, что он избавился от квантовых скачков из одного состояния в другое, добавив в квантовую теорию волны. Он представлял «переходы» электрона из одного состояния в другое подобными изменению вибрации скрипичной струны от одной ноты к другой (одного обертона к другому), а волну в своем волновом уравнении приравнивал к волне материи, предложенной де Бройлем. Но пока другие ученые искали основополагающее значение уравнений, эти надежды вернуть на сцену классическую физику не оправдали себя. Бор, например, был разочарован волновой концепцией. Как волна – или несколько взаимодействующих волн – может заставлять счетчик Гейгера щелкать, как будто бы он засек единичную частицу? Что в атоме обладает «волновой» структурой? И, самое главное, как объяснить природу излучения абсолютно черного тела с позиции волн Шрёдингера? В результате в 1926 году Бор пригласил его в Копенгаген, и там они занялись этими проблемами, разработав решения, которые не слишком понравились Шрёдингеру.

Прежде всего, при ближайшем рассмотрении сами волны оказались столь же абстрактными, как и числа q Дирака. Математика показала, что они не могли быть реальными волнами в пространстве, как рябь на пруду, а представляли собой сложную форму вибрации в воображаемом математическом пространстве, называемом пространством конфигураций. Хуже того, каждой частице (скажем, каждому электрону) нужны собственные три измерения. Одиночный электрон можно описать волновым уравнением в трехмерном пространстве конфигураций; для описания двух электронов необходимо шестимерное пространство конфигураций; для описания трех электронов – девятимерное и так далее. Что касается излучения абсолютно черного тела, даже при переводе всего на язык волновой механики потребность в отдельных квантах и квантовых скачках не исчезала. Шрёдингеру это претило, и он сделал ремарку, которую часто цитируют с небольшими различиями при переводе: «Знал бы я, что мы не сможем избавиться от проклятых квантовых скачков, я бы ни за что в это не впутался». Как выразился Гейзенберг в своей книге «Физика и философия»: «…Парадоксы дуализма волновой картины и картины частиц не были разрешены; они каким-то образом спрятались в математической схеме».

Без сомнения, приятная глазу картина физически реальных волн, распространяющихся вокруг ядра атома, которая привела Шрёдингера к открытию волнового уравнения, названного в его честь, неверна. Волновая механика ничуть не лучше описывает структуру квантового мира, чем матричная механика, но при этом, в отличие от матричной механики, создает иллюзию знакомого и удобного инструмента. Именно эта приятная иллюзия, которая сохранилась и по сей день, заставила всех забыть о том, что атомный мир совсем не похож на обычный. Несколько поколений студентов, которые теперь уже сами стали профессорами, могли получить гораздо более глубокое понимание квантового мира, если бы их заставили свыкнуться с абстрактной природой подхода Дирака, вместо того чтобы пытаться представить себе поведение атомов на основании того, что они знали о поведении волн в обычном мире. И потому мне кажется, что хотя и были совершены огромные шаги к применению квантовой механики – на манер ингредиента для блюда из кулинарной книги – ко многим интересным проблемам (вспомните слова Дирака о физиках второго сорта, занимающихся первоклассной работой), спустя пятьдесят лет с момента открытия Дирака фундаментальное понимание квантовой физики современными учеными не глубже того, которым обладали их коллеги в конце 1920-х. Из-за успеха уравнения Шрёдингера в качестве практического инструмента люди перестали думать о том, как и почему работает этот инструмент. К 1980-м годам произошли минимальные изменения: теперь больше людей интересуются смыслом квантовой физики, но так и не найдено достойной альтернативы Копенгагенской интерпретации.

 

Квантовая кулинария

 

Основы квантовой кулинарии – практической квантовой физики, развивавшейся с 1920-х, – покоятся на идеях, предложенных Бором и Борном в конце 1920-х годов. Бор снабдил нас философским базисом, чтобы пересмотреть двойственную корпускулярно-волновую природу квантового мира, а Борн – общими правилами, которым необходимо следовать при использовании квантовых рецептов.

Бор заявил, что обе теоретические картины, физика частиц и физика волн, являются одинаково верными, дополняющими друг друга описаниями одной и той же реальности. Ни одно из этих описаний само по себе не является полным, но существуют обстоятельства, в которых предпочтительно использование концепции частиц, и обстоятельства, в которых предпочтительно использование волновой концепции. Фундаментальная сущность вроде электрона не является ни волной, ни частицей, но при определенных обстоятельствах она ведет себя, как волна, а при других обстоятельствах – как частица (а на самом деле она, конечно, представляет собой хливкого шорька). Но невозможно провести эксперимент, который показал бы, что электрон ведет себя одновременно и как волна, и как частица. Идея о том, что волна и частица являются дополняющими друг друга сторонами сложной сущности электрона, называется принципом дополнительности.

Борн обнаружил новый способ толкования волн Шрёдингера. Важным аспектом уравнения Шрёдингера, соответствующим физической ряби на пруду из обычного мира, является волновая функция, которая, как правило, обозначается греческой буквой пси (ψ). Работая в Геттингене бок о бок с физиками-экспери-ментаторами, которые практически каждый день проводили новые опыты с электронами, снова и снова подтверждавшие их корпускулярную природу, Борн просто не мог принять, что эта функция пси соответствует «реальной» волне электрона, хотя, как и большинство физиков того времени (и тех, что жили позже), он решил, что волновые уравнения лучше всего подходят для решения многих проблем. Он попытался найти способ связать волновую функцию с существованием частиц. Взяв идею, которая уже появлялась раньше в споре о природе света, он переосмыслил ее. Частицы реальны, сказал Борн, но в некотором роде их направляет волна, и сила этой волны (точнее, значение ψ2) в любой точке пространства определяет вероятность обнаружения частицы в этой конкретной точке. Мы не можем с уверенностью сказать, где находится частица вроде электрона, но волновая функция позволяет нам рассчитать вероятность того, что при проведении эксперимента с целью обнаружения электрона он будет обнаружен в определенном месте. Главная странность этой идеи заключается в том, что она гласит, будто любой электрон может быть где угодно: его просто с огромной вероятностью можно обнаружить в одних местах и с минимальной вероятностью – в других. Но подобно статистическим законам, которые утверждают, что весь воздух в комнате может собраться в ее углах, толкование ψ, предложенное Борном, лишило и без того неопределенный квантовый мир еще некоторой определенности.

Идеи Бора и Борна тесно связаны с открытием Гейзенберга, сделанным в самом конце 1926 года, в соответствии с которым неопределенность действительно является неотъемлемым компонентом уравнений квантовой механики. Математика, которая утверждает, что pq ≠ qp, также утверждает, что мы не можем быть уверены даже в том, что именно представляют собой р и q. Если назвать р импульсом, скажем, электрона и использовать q для обозначения его положения, можно представить себе очень точное измерение либо р, либо q. Величину «ошибки» в наших вычислениях можно назвать Δρ или Δq, так как математики используют греческую букву дельта (Δ), чтобы обозначать небольшие различия в величинах. Гейзенберг показал, что, если попытаться – в этом случае – измерить и положение, и импульс электрона, успехом это не увенчается, поскольку Δρ × Aq должно всегда быть больше ħ, постоянной Планка, деленной на 2π. Чем точнее мы знаем позицию объекта, тем менее мы уверены в его импульсе – то есть в том, куда он движется. А если мы знаем точное значение импульса, мы не можем точно определить, где находится объект. Принцип относительности имеет далекоидущие следствия, которые описываются в третьей части этой книги. Важно, однако, понять, что он не обнаруживает никаких недостатков в экспериментах, разработанных с целью измерения свойств электрона. Первое правило квантовой механики заключается в том, что некоторые пары свойств, включая положение и импульс, в принципе невозможно точно измерить одновременно. На квантовом уровне не существует абсолютной истины[33].

Принцип неопределенности Гейзенберга измеряет ту величину, на которую пересекаются дополняющие друг друга описания электрона или других фундаментальных сущностей. Положение является, прежде всего, свойством частиц, ведь их позицию можно определить весьма точно. Волны, с другой стороны, не имеют точного положения, но обладают импульсом. Чем больше знаешь о волновом аспекте реальности, тем меньше знаешь о корпускулярном – и наоборот. Эксперименты, разработанные с целью засечь частицы, всегда засекают частицы, а эксперименты, разработанные с целью засечь волны, всегда засекают волны. Ни один эксперимент не показывает, что электрон одновременно ведет себя и как волна, и как частица.

Бор подчеркнул важность проведения опытов для понимания квантового мира. Только эксперименты позволяют нам исследовать квантовый мир, и каждый эксперимент, в свою очередь, задает вопрос квантовому миру. Вопросы эти во многом основаны на нашем повседневном опыте, поэтому мы ищем свойства вроде «импульса» и «длины волны» и получаем «ответы», которые толкуем с позиции этих свойств. Эксперименты уходят корнями в классическую физику, хотя мы и знаем, что классическая физика не подходит для описания атомных процессов. Кроме того, нам приходится вмешиваться в атомные процессы, чтобы вообще наблюдать их, поэтому, как заметил Бор, нет смысла спрашивать, как ведут себя атомы, когда мы на них не смотрим. Бор объяснил, что мы можем лишь рассчитать вероятность того, что конкретный эксперимент завершится конкретным результатом.

Этот набор идей – принцип неопределенности, принцип дополнительности, вероятность и нарушение системы, наблюдаемой наблюдателем, – называется «Копенгагенской интерпретацией» квантовой механики, хотя никто в Копенгагене (или где бы то ни было еще) никогда не объединял все эти концепции в окончательном описании, озаглавленном «Копенгагенская интерпретация», а один из ее ключевых компонентов, статистическое толкование волновой функции, и вовсе обязан своим появлением Максу Борну из Геттингена. Копенгагенская интерпретация удовлетворила требованиям многих, если не всех, и характеризуется неустойчивостью, подходящей для неустойчивого мира квантовых хливких шорьков. Бор впервые представил эту концепцию публике в итальянском Комо в сентябре 1927 года. Это ознаменовало появление полной теории квантовой механики в форме, пригодной для использования любым компетентным физиком при решении проблем, связанных с атомами и молекулами: больше не нужно было ломать голову над основами, достаточно было желания следовать готовым рецептам и получать ответы.

В последующие десятилетия ученые вроде Дирака и Паули внесли фундаментальный вклад в эту сферу, и достижения пионеров новой квантовой теории были сполна отмечены Нобелевским комитетом, хотя награды распределялись в соответствии с удивительной логикой. Гейзенберг получил премию в 1932 году и ужаснулся тому, что вместе с ним не отметили его коллег Борна и Йордана; сам Борн много лет переживал из-за этого, часто подчеркивая, что Гейзенберг даже не знал, что такое матрица, пока он (Борн) не рассказал ему об этом. В письме Эйнштейну в 1953 году он заметил: «Тогда он действительно понятия не имел о том, что такое матрица. И именно он пожал все лавры за нашу совместную работу, получив даже Нобелевскую премию»[34]. Шрёдингер и Дирак разделили премию по физике в 1933 году, но Паули получил свою награду лишь в 1945-м – за открытие принципа исключения. Борну вручили Нобелевскую премию последним – в 1954 году – за изучение вероятностного толкования квантовой механики[35].

И все же эта бурная деятельность – новые открытия 1930-х годов, присуждение премий и применение квантовой теории в десятилетия, последовавшие за Второй мировой войной, – не могла скрыть тот факт, что эра фундаментальных открытий была пока окончена. Возможно, мы стоим на пороге другой такой эры и новый прогресс будет связан с отказом от Копенгагенской интерпретации и приятной, как будто бы знакомой нам волновой функции Шрёдингера. Однако, прежде чем мы рассмотрим все эти невероятные возможности, необходимо описать, как многого достигла эта теория, которая в сущности была полностью сформулирована к концу 1920-х годов.

 

 

Глава седьмая

На кухне с квантом

 

Чтобы использовать рецепты из квантовой кулинарной книги, физики должны знать несколько простых вещей. Не существует модели, показывающей, чем в действительности являются атом или элементарные частицы, и ничто не дает нам понимания, что происходит, когда мы не наблюдаем за ними. Однако уравнения волновой механики (самый популярный и часто используемый вариант описания) могут быть использованы для получения предсказаний на статистической основе. Если мы проводим наблюдение квантовой системы и в результате измерений получаем А, то квантовые уравнения дают нам вероятность получения результата В (или С, D и так далее) при проведении того же измерения спустя некоторое время. Квантовая теория не объясняет, как выглядят атомы или что они делают, пока мы не наблюдаем их. К сожалению, большая часть людей, использующих сегодня волновые уравнения, не понимает этого и просто принимает на веру роль вероятностей. Студенты изучают то, что Тед Бастин назвал «кристаллизованной формой игры идей конца двадцатых… то, с чем способен работать при решении конкретных проблем средний физик, который никогда не задается вопросом о том, что он в действительности думает о фундаментальных задачах»[36]. Они учатся считать волны реальными, и лишь немногие заканчивают курс квантовой теории, не представляя наглядно картину строения атома. Люди используют вероятностную интерпретацию, при этом не вполне понимая ее суть, и это доказывает мощь уравнений, выведенных, в частности, Шрёдингером и Дираком, а также интерпретации Борна: даже не понимая, почему эти рецепты работают, люди способны весьма эффективно готовить на квантовой кухне.

Первым квантовым шеф-поваром стал Дирак. Как мы помним, он был первым человеком за пределами Геттингена, кто понял новую матричную механику и развил ее дальше. Точно так же он взял волновую механику Шрёдингера и, развивая ее, дал ей более основательный фундамент. Адаптируя уравнения к требованиям теории относительности и добавляя в качестве четвертого измерения время, в 1928 году Дирак столкнулся с необходимостью ввести новое понятие, которым теперь является спин электрона, и оно неожиданно дало объяснение расщеплению спектральных линий на дублеты, которое мучило теоретиков в течение десяти лет. Одновременно с этим появилось другое неожиданное следствие, открывшее путь для развития современной физики элементарных частиц.

 

Антиматерия

 

В соответствии с уравнениями Эйнштейна частица с массой т и импульсом р обладает энергией, определяющейся следующим равенством:

Е2 = m2рл + р2с2,

которое сокращается до знаменитого Е = тс2, когда импульс равен нулю. Но это еще далеко не все. Поскольку известное уравнение получается, когда берется квадратный корень от его полной формы, в математике необходимо сказать, что Е может быть либо положительной, либо отрицательной. Как известно, 2 × 2 = 4 и -2 × -2 = 4, поэтому, строго говоря, Е = ±mc2. Когда в уравнения проникают такие «отрицательные корни», их, как правило, можно отбросить как не имеющие значения, ведь «очевидно», что нам нужен только положительный корень. Будучи гением, Дирак не предпринял этот очевидный шаг, а озадачился следствиями. Когда в релятивистской версии квантовой механики происходит расчет энергетических уровней, появляются два их набора: один положительный, соответствующий mс2, а другой – отрицательный, соответствующий – mс2. В соответствии с теорией электроны должны падать на самый низкий из свободных энергетических уровней, но при этом даже самый высокий отрицательный энергетический уровень расположен ниже, чем самый низкий положительный энергетический уровень. Так что такое отрицательные энергетические уровни? Почему все электроны во Вселенной не падают на них и не исчезают?

Ответ Дирака основывался на том, что электроны являются фермионами и только один электрон может занять одно возможное электрическое состояние (два на энергетический уровень, один с каждым значением спина). Должно быть, заключил он, электроны не падают на отрицательные энергетические уровни, поскольку все эти уровни уже заполнены. То, что мы называем «пустым пространством», на самом деле является морем электронов с отрицательной энергией! На этом он не остановился. Дайте электрону энергию, и он поскачет вверх по лестнице энергетических состояний. Поэтому, если дать достаточное количество энергии одному из электронов в отрицательном энергетическом море, он должен перепрыгнуть в реальный мир и стать видимым, как обычный электрон. Чтобы перейти из состояния – mс2 в состояние +mс 2, явно необходима энергия, равная 2mс 2, которая для массы электрона равняется примерно 1 МэВ и довольно просто может появляться в атомных процессах, когда частицы сталкиваются друг с другом. Электрон с отрицательной энергией, перепрыгнувший в реальный мир, будет обычным во всех отношениях, за исключением того, что он оставит после себя дырку в море отрицательной энергии, став отсутствующим электроном с отрицательным зарядом. Эта дырка, по словам Дирака, должна вести себя, как положительно заряженная частица (подобно тому, как двойное отрицание рождает утверждение, отсутствие отрицательно заряженной частицы в отрицательном море должно проявлять себя в качестве положительного заряда). Когда Дирак впервые задумался об этом, он решил, что по закону симметрии эта положительно заряженная частица должна обладать той же массой, что и электрон. Но в минуту слабости, когда он опубликовал свою работу, Дирак предположил, что положительно заряженная частица могла быть протоном – единственной частицей, помимо электрона, которая была известна в конце 1920-х годов. Как он написал в «Путях физики», это было ошибкой и ему следовало, набравшись смелости, предсказать, что эксперименты выявят прежде неизвестную частицу, обладающую массой, равной массе электрона, но положительным зарядом при этом.

Сначала никто не понял, как именно относиться к работе Дирака. Была заявлена идея о том, что положительным противовесом электрону является протон, но никто не отнесся к ней с должной серьезностью, пока в 1932 году американский физик Карл Андерсон не обнаружил следов положительно заряженных частиц в первых наблюдениях космических лучей. Космические лучи – это энергетические частицы, которые проникают на Землю из космоса. Перед Первой мировой войной их обнаружил австриец Виктор Гесс, который в 1936 году разделил Нобелевскую премию с Андерсоном. Эксперименты Андерсона предполагали наблюдение за частицами в процессе их движения по камере Вильсона – устройству, в котором частицы оставляют за собой след, подобный конденсационному следу самолета. Андерсон обнаружил, что некоторые частицы оставляли след, который изгибался магнитным полем на ту же величину, что и след электрона, но в противоположном направлении. Это могли быть только частицы, обладающие той же массой, что и электрон, но заряженные положительно, и их назвали «позитронами». Андерсон получил Нобелевскую премию за это в 1936 году, через три года после того, как Дирак получил свою, и его открытие изменило представление физиков о мире частиц. Они долго предполагали существование нейтральной атомной частицы, нейтрона, который в 1932 году обнаружил Джеймс Чедвик (и получил за это Нобелевскую премию в 1935-м), и были вполне довольны идеей, что ядро атома состоит из положительных протонов и нейтральных нейтронов, а вокруг располагаются отрицательные электроны. Но позитронам в этой модели не было места, и идея о том, что частицы могут создаваться из энергии, полностью изменила понятие фундаментальной частицы.

В принципе в соответствии с описанным Дираком процессом из энергии может быть создана любая частица, при условии что одновременно с ней создается античастица – «дырка» в море отрицательной энергии. Хотя сегодня физики предпочитают более сложные версии истории о сотворении частиц, принципы остаются неизменными – и одним из главных является то, что, встречаясь с античастицей, частица «падает в дырку», высвобождая энергию в 2mс2 и исчезая, но не столько в клубах дыма, сколько во вспышке гамма-лучей. До 1932 года многие физики наблюдали за следами частиц в камерах Вильсона, и многие из наблюдавшихся ими частиц, должно быть, имели отношение к позитронам, но до исследований Андерсона всегда предполагалось, что эти следы связаны с движением электронов, влетающих в атомное ядро, а не позитронов, вылетающих наружу. Физики с предубеждением относились к идее о существовании новых частиц. Через пятьдесят лет ситуация изменилась, и, как выразился Дирак: «Люди слишком стремятся провозгласить появление новой частицы на малейшем основании, хоть теоретическом, хоть экспериментальном» («Пути физики», с. 18). В результате в «зоопарке» частиц оказалось не только две фундаментальные частицы, известные в 1920-х, но уже более 200 частиц, каждую из которых можно создать, обеспечив достаточной энергией ускоритель частиц. Большая их часть крайне нестабильна и очень быстро «распадается» на лавину других частиц и излучение. В этом зоопарке практически потерялись антипротон и антинейтрон, открытые в середине 1950-х, но они тем не менее представляют собой веское подтверждение верности оригинальных идей Дирака.

О зоопарке частиц написаны целые книги, а занимаясь таксономией частиц, многие физики выстроили свою карьеру. Но мне кажется, что в таком изобилии частиц не может быть ничего фундаментального и ситуация напоминает ситуацию в спектроскопии до развития квантовой теории, когда спектроскописты могли измерить и каталогизировать взаимосвязи линий в разных спектрах, но при этом не догадывались о глубинных причинах наблюдаемых взаимосвязей. Базовые правила для создания множества известных частиц должно было обеспечить нечто более фундаментальное, и в 1950-х годах Эйнштейн объяснил это своему биографу Абрахаму Пайсу. «Было ясно: он чувствовал, что еще не настало время разбираться с этим и что эти частицы в итоге станут решениями уравнений единой теории поля»[37]. Тридцать лет спустя окажется, что Эйнштейн был прав, и наброски возможной единой теории, которая включает в себя зоопарк частиц, будут описаны в эпилоге. Сейчас же важно отметить, что великий подъем физики частиц, начавшийся в 1940-х годах, берет свое начало в развитии квантовой теории Дираком – в первых рецептах из квантовой кулинарной книги.

 

Внутри ядра

 

После того как квантовая механика триумфально объяснила поведение атомов, физики естественным образом обратились к ядерной физике, однако, несмотря на многочисленные практические успехи (включая ядерные реакторы и водородную бомбу), мы до сих пор не понимаем поведение ядра настолько же хорошо, как поведение атома. Это, впрочем, не должно удивлять. Радиус ядра в 100 тысяч раз меньше, чем радиус атома, а поскольку объем пропорционален кубу радиуса, то атом по сути в тысячу миллионов миллионов (1015) раз больше ядра. Можно измерить простые свойства вроде массы и заряда ядра, и эти измерения ведут к концепции изотопов – ядер, обладающих тем же числом протонов, а потому образующих атомы с тем же числом электронов (и теми же химическими свойствами), но другим числом нейтронов, а следовательно, и другой массой.

Так как все протоны, формирующие ядро, заряжены положительно, а потому отталкиваются друг от друга, их должен удерживать вместе некий сильный «клей» – сила, действующая только на очень коротких расстояниях, соответствующих размеру ядра, которая называется сильным ядерным взаимодействием (существует также и слабое ядерное взаимодействие, которое слабее электрической силы, но играет значительную роль в некоторых ядерных реакциях). Похоже, что нейтроны тоже играют роль в стабильности ядра, поскольку, лишь посчитав количество протонов и нейтронов в стабильном ядре, физики создают картину, очень напоминающую оболочечное расположение электронов вокруг ядра. Самое большое число протонов, обнаруженное во встречающемся в естественных условиях ядре, составляет 92 – в уране. Хотя физики преуспели в создании ядер, содержащих до 106 протонов, они нестабильны (за исключением некоторых изотопов плутония с атомным числом 94) и распадаются на другие ядра. Всего существует около 260 известных стабильных ядер. Наше знание об этих ядрах даже сегодня кажется менее адекватным, чем модель Бора в качестве описания атома, но явно видны признаки того, что в ядре есть определенная структура.

Ядра с 2, 8, 20, 28, 50, 82 и 126 нуклонами (нейтронами или протонами) особенно стабильны, и соответствующие им элементы встречаются в природе чаще, чем атомы с несколько иным числом нуклонов, поэтому эти числа иногда называют «магическими». Но в структуре ядра доминируют протоны, и для каждого элемента существует только ограниченное количество возможных изотопов, соответствующих различному количеству нейтронов – возможное количество нейтронов обычно немного превосходит количество протонов и увеличивается для тяжелых элементов. Ядра, обладающие магическим числом и протонов, и нейтронов, особенно стабильны, и на этом основании теоретики предполагают, что сверхтяжелые элементы, в ядре которых содержится около 114 протонов и 184 нейтронов, должны быть стабильны, но такие огромные ядра никогда не обнаруживались в природе и не создавались в ускорителях частиц посредством добавления нуклонов к самым массивным ядрам, встречающимся в природе.

Самое стабильное ядро из всех принадлежит железу-56, и более легкие ядра «хотят» увеличить количество нуклонов и стать железом, в то время как более тяжелые ядра «хотят» избавиться от нуклонов и приблизиться к наиболее стабильной форме. Внутри звезд самые легкие ядра водорода и гелия превращаются в более тяжелые через серию ядерных реакций, которые синтезируют легкие ядра вместе, на пути к железу формируя элементы вроде углерода и кислорода и высвобождая в результате этого энергию. Когда некоторые из звезд взрываются в качестве сверхновых, в ядерные процессы проникает огромное количество гравитационной энергии, и в результате на железе синтез не останавливается, и возникают более тяжелые элементы, включая уран и плутоний. Когда тяжелые элементы возвращаются к самой стабильной форме, высвобождая нуклоны в форме альфа-частиц, электронов, позитронов или отдельных нейтронов, они тоже испускают энергию, которая по сути является аккумулированной энергией давно состоявшегося взрыва сверхновой. Альфа-частица по сути представляет собой ядро атома гелия и состоит из двух протонов и двух нейтронов. Высвобождая такую частицу, ядро сокращает свою массу на четыре единицы, а атомный номер – на две. Это происходит в соответствии с принципами квантовой механики и законами неопределенности, открытыми Гейзенбергом.

Внутри ядра нуклоны сдерживаются сильным ядерным взаимодействием, но если альфа-частица находится рядом с ядром, она будет сильно отталкиваться электрической силой. Совокупный эффект двух сил создает то, что физики называют «потенциальной ямой». Представьте себе разрез вулкана с пологими склонами и глубоким кратером. Мяч, размещенный сразу за границей кратера, скатится вниз по склону горы, а мяч, размещенный внутри кратера, упадет вниз, в сердце вулкана. Нуклоны внутри ядра находятся в подобном положении – они расположены в яме в центре атома, но если они пересекут «границу» – хотя бы слегка, – они «укатятся прочь» под действием электрической силы. Суть в том, что в соответствии с классической механикой нуклоны (или группы нуклонов вроде альфа-частицы) просто не обладают достаточным количеством энергии, чтобы выбраться из ямы и пересечь границу – а если бы обладали, они бы не оказались в этой яме. Однако квантово-механическое представление этой ситуации довольно сильно отличается. Хотя потенциальная яма все равно создает барьер, он не является непреодолимым, и существует определенная, хотя и маленькая, вероятность того, что альфа-частица может на самом деле оказаться за пределами ядра, а не внутри него. Если говорить о неопределенности, одно из соотношений Гейзенберга включает в себя энергию и время и утверждает, что энергия любой частицы может определяться только в диапазоне ΔE  в период времени Δt , при этом ΔE  x Δt  должно быть больше ħ. На короткое время частица может «заимствовать» энергию из закона неопределенности, набирая достаточное количество энергии, чтобы перепрыгнуть через потенциальный барьер, а затем отдавать ее назад. Возвращаясь к «должному» энергетическому состоянию, она находится уже снаружи барьера, а не внутри него, и устремляется дальше.

 

Рис. 7.1. Потенциальная яма в центре атомного ядра. Частице А приходится оставаться внутри, пока она не получит достаточно энергии, чтобы перепрыгнуть «через край» в точку В, откуда она скатится «вниз». Квантовая неопределенность позволяет частице время от времени «пробиваться» от А к В (или от В к А), не имея достаточного количества собственной энергии на подъем.

 

Также на это можно посмотреть с позиции неопределенности положения. Частица, которая «должна быть» внутри барьера, оказывается снаружи него, потому что в квантовой механике ее положение определяется лишь в общих чертах. Чем большей энергией обладает частица, тем проще ей выбраться, но она не должна обладать достаточным количеством энергии, чтобы выбраться из потенциальной ямы, как того требует классическая теория. Кажется, что частица как бы «пробивается» сквозь барьер, и этот эффект имеет чисто квантовую природу[38]. На этом основан радиоактивный распад, но чтобы объяснить деление атомного ядра, необходимо переключиться на другую модель ядра атома.

Теперь забудьте об отдельных нуклонах в оболочках и представьте ядро в качестве капли жидкости. Капля воды принимает разные формы, и точно так же некоторые общие свойства ядра можно объяснить его изменяющейся формой. Можно представить, что большое ядро выгибается в разные стороны, то становясь похожим на сферу, то на гантель. Если такому ядру придать энергии, колебания могут стать столь существенными, что ядро распадется надвое, сформировав два меньших по размеру ядра и разбрызгав вокруг крошечные капли – альфа– и бета-частицы и нейтроны. В некоторых ядрах такой распад может быть запущен столкновением быстро двигающегося нейтрона с ядром, после чего запускается цепная реакция, в процессе которой каждое ядро, разделенное таким образом, выпускает достаточное количество нейтронов, чтобы произошел распад еще как минимум двух соседних ядер. В случае с ураном-235, который содержит 92 протона и 143 нейтрона, всегда создаются два неравных ядра с атомными числами в диапазоне от 34 до 58, в сумме дающими 92, и испускаются свободные нейтроны. В результате каждого распада высвобождается примерно 200 МэВ энергии, и каждый запускает еще несколько распадов, при условии, что количество урана достаточно велико, чтобы нейтроны не вылетели из него разом. Процесс идет по экспоненте и представляет собой принцип действия атомной бомбы. Управляя им при помощи материала, который поглощает нейтроны, чтобы процесс шел медленно, мы можем построить контролируемый ядерный реактор, который используется для нагрева воды, выработки пара и производства электричества. И снова энергия, которую мы извлекаем, является энергией звездного взрыва, давным-давно произошедшего очень далеко от нас.

Однако в процессе синтеза мы можем скопировать выработку энергии звездой, как происходит и в случае с Солнцем. Пока мы смогли воссоздать только первую ступень на лестнице синтеза, переход от водорода к гелию, и не смогли контролировать реакцию, позволив ей идти своим чередом только в водородной, или термоядерной, бомбе. Суть синтеза противоположна сути деления. Вместо того чтобы склонять к распаду большие ядра, необходимо подтолкнуть к слиянию маленькие ядра, преодолевая при этом естественное электростатическое отторжение их положительных зарядов, пока они не окажутся так близко друг к другу, что сильное ядерное взаимодействие, действующее только на крайне малых расстояниях, не сможет превзойти электрическую силу и притянуть их друг к другу. Как только появляются несколько ядер, которые можно синтезировать таким образом, получаемое в процессе тепло запускает направленный наружу поток энергии, стремящийся разделить все остальные ядра в момент синтеза и полностью останавливающий весь процесс[39]. Надежда на получение в будущем бесконечного количества энергии из ядерного синтеза покоится на необходимости найти способ в течение достаточного времени удержать вместе достаточное количество ядер, чтобы они испустили приемлемое количество энергии. Также важно обнаружить такой процесс, в ходе которого высвобождается больше энергии, чем использовалось для столкновения ядер. Это довольно просто сделать внутри бомбы: по сути, нужно просто окружить ядра, которые необходимо подвергнуть синтезу, ураном, а затем запустить ядерный взрыв. Обращенное внутрь давление от взрыва столкнет друг с другом достаточное количество ядер водорода, чтобы запустить второй, более масштабный термоядерный взрыв. Но для гражданских электростанций нужно что-то более тонкое, и сейчас изучаются методы, которые включают в себя использование сильных магнитных полей, сформированных таким образом, чтобы они действовали подобно бутылке, удерживающей внутри заряженные ядра, и световых импульсов лазерных пучков, которые физически сталкивают ядра. Лазеры, конечно, производятся в соответствии с очередным рецептом из квантовой кулинарной книги.

 

Лазеры и мазеры

 

Хотя для разработки рецептов создания новых частиц в квантовой кулинарии требовался искусный шеф-повар вроде Дирака, понимание ядерных процессов менее полно, чем модель атома Бора. Поэтому, возможно, не стоит удивляться, узнав, что и самой модели Бора до сих пор находится некоторое применение. Одну из самых экзотических и восхитительных разработок современной науки – лазеры – поймет любой компетентный квантовый повар, умеющий готовить на скорую руку и слышавший о модели Бора: для объяснения лазеров не нужен великий гений. (В этом случае гений нужен для разработки технологии их конструирования, но это другая история.) Поэтому, извинившись перед Гейзенбергом, Борном, Йорданом, Дираком и Шрёдингером, давайте на некоторое время забудем о квантовых тонкостях и вернемся к аккуратной модели атома, в которой электроны вращаются вокруг ядра. Как мы помним, в этой модели, когда атом получает квант энергии, электрон перескакивает на другую орбиту, а когда такой возбужденный атом оставляется в покое, рано или поздно электрон падает обратно на основной уровень, испуская ровно тот же квант излучения с определенной длиной волны. Этот процесс называется спонтанным излучением и является противоположным поглощению.

Когда Эйнштейн в 1916 году исследовал такие процессы и выводил статистическое обоснование квантовой теории, которую он впоследствии счел столь неприятной, он понял, что есть и другая возможность. Возбужденный атом можно заставить испустить лишнюю энергию и вернуться на основной уровень, если его подтолкнуть, так сказать, пролетающим мимо фотоном. Этот процесс называется вынужденным излучением и совершается только в том случае, если пролетающий фотон обладает ровно той же длиной волны, что и тот, который готов испустить атом. Подобно каскаду нейтронов, которые задействованы в цепной реакции ядерного деления, мы можем представить массив возбужденных атомов и всего один фотон с правильной длиной волны, который стимулирует один атом к излучению, после чего оригинальный фотон вместе с новым стимулируют к излучению еще два атома, четыре фотона стимулируют еще четыре атома и так далее. В результате получается каскад излучения, частота которого в точности совпадает. Более того, учитывая способ, которым запускается излучение, все волны точно синхронны друг другу: они вместе поднимаются «вверх», на гребень волны, и опускаются «вниз», в провал волны, создавая очень чистый пучок когерентного излучения. Так как ни один из гребней и провалов такого излучения не уничтожает другой, вся энергия, выпущенная атомами, остается в пучке и может передаваться на маленькую область вещества, куда направлен этот пучок.

Когда группа атомов или молекул возбуждается теплом, они заполняют диапазон энергетических уровней и, брошенные на произвол судьбы, излучают энергию с разными длинами волн беспорядочным и некогерентным образом. В таком процессе эффективной энергии гораздо меньше, чем энергии, которую испустили атомы и молекулы. Однако существуют способы выборочного заполнения узкой полосы энергетических уровней, с тем чтобы затем вызвать возврат возбужденных атомов на этой полосе на основной уровень. Катализатором для этого каскада является слабое внешнее излучение правильной частоты. На выходе получается гораздо более сильный пучок, имеющий ту же частоту. Эти методы были впервые разработаны в конце 1940-х годов независимо командами в США и СССР с использованием радиочастотного излучения с длиной волны от 1 до 30 сантиметров, которое называется микроволновым излучением. В 1954 году первооткрыватели получили за свою работу Нобелевскую премию. Поскольку излучение на этом участке называется микроволновым излучением, а также из-за того, что процесс включает в себя усиление радиоволн индуцированным излучением в соответствии с идеями Эйнштейна 1917 года, первооткрыватели использовали акроним МАЗЕР (от microwawe amplification by stimulated emission of radiation – «усиление микроволн с помощью индуцированного излучения»).

Потребовалось еще десять лет, чтобы найти способ, при котором этот трюк работал бы для оптических частот излучения, но в 1957 году почти одновременно эта идея пришла в голову двум людям. Одним из них (судя по всему, первым) был студент Колумбийского университета Гордон Гулд, а вторым – один из пионеров мазера Чарлз Таунс, который получил часть Нобелевской премии 1964 года. Спор о том, кто именно что и когда открыл, лег в основу судебной баталии за патент, так как лазеры, оптический эквивалент мазеров (от light amplification… т. e. «усиление света…»), теперь стали очень прибыльным изобретением. Впрочем, нас, к счастью, не слишком волнуют юридические тяжбы. Сегодня существует несколько типов лазера, и самым простым из них является твердотельный лазер с оптической накачкой.

В таком лазере небольшой стержень материала (например, рубина) обтачивается и полируется для получения плоской грани, а затем окружается ярким источником света – газоразрядной трубкой, которая может быстро включаться и выключаться, создавая световые импульсы, обладающие достаточной энергией, чтобы возбуждать атомы стержня. Весь прибор охлаждается, чтобы удостовериться в минимальном влиянии теплового возбуждения на атомы стержня, и яркие вспышки лампы используются для того, чтобы стимулировать (или накачивать) атомы до возбужденного состояния. Когда лазер запущен, с плоской грани стержня испускается импульс чистого рубинового света, в котором содержатся тысячи ватт энергии.

Кроме того, существуют жидкостные лазеры, лазеры на флуоресцентных красителях, газовые лазеры и так далее. Все они обладают одинаковыми основными свойствами: внутрь входит некогерентная энергия, а наружу выходит когерентный свет, который переносит много энергии. Некоторые лазеры, например газовые, дают непрерывный чистый пучок света, который представляет собой идеальную «линейку» для измерений и нашел широкое применение на рок-концертах и в рекламе. Другие выпускают краткие, но мощные импульсы энергии, которыми можно просверливать отверстия в твердых предметах (и которые нашли применение в военных целях). Лазерные резцы используются в разных отраслях: от швейной промышленности до микрохирургии. Лазерные пучки более эффективны при передаче информации, чем радиоволны, ведь чем выше частота излучения, тем больше информации можно передать посредством него за одну секунду. Штрихкоды на продуктах в супермаркете (и на обложке этой книги) считываются лазерным сканером; видео– и аудиодиски, появившиеся на рынке в начале 1980-х, считываются лазером; настоящие трехмерные фотографии, или голограммы, делаются при помощи лазеров и так далее.

Список этот практически бесконечен, даже если не включать в него использование мазеров в качестве усилителей слабых сигналов (например, с телекоммуникационных спутников), радаров и других подобных приборов; и все это берет свое начало даже не в истинной квантовой теории, а в первой версии квантовой физики. Когда вы покупаете пачку кукурузных хлопьев и кассир считывает с нее штрихкод лазерным сканером, когда вы посещаете рок-концерт с огромными цветными дисплеями, или смотрите концерт по телевидению через спутник, находящийся на другом конце мира, или проигрываете концерт той же самой группы на новейшей видеосистеме, или восхищаетесь магией голографического воспроизведения, все это происходит благодаря Альберту Эйнштейну и Нильсу Бору, которые более девяноста лет назад вывели принципы вынужденного излучения.

 

Могучее микро

 

Самое серьезное влияние квантовой механики на повседневную жизнь, без сомнения, относится к области физики твердого тела. Сама по себе фраза «твердое тело» лишена романтики; услышав ее, вы вряд ли проведете в уме связь с квантовой теорией. Да, это то самое направление физики, которое подарило нам транзисторное радио, Sony Walkman, электронные часы, карманные калькуляторы, микрокомпьютеры и программируемые стиральные машины. Пренебрежение физикой твердого тела связано не с тем, что она представляет собой запутанную ветвь науки, а с тем, что она настолько привычна нам, что мы воспринимаем ее как должное. И снова нужно заметить, что ни один из этих приборов не появился бы, если бы в дело не вступила квантовая кулинария.

Все устройства, перечисленные в предыдущем абзаце, основаны на свойствах полупроводников, которые являются твердыми телами и, что логично, обладают характеристиками, представляющими собой нечто среднее между свойствами проводников и диэлектриков. Не вдаваясь в детали, можно сказать, что диэлектрики – это вещества, которые не проводят электричество и не проводят его потому, что электроны в их атомах крепко присоединены к ядрам в соответствии с законами квантовой механики. В проводниках, например металлах, каждый атом имеет некоторое число электронов, которые слабо связаны с ядром и находятся в энергетических состояниях, расположенных близко к верхней границе атомной потенциальной ямы. Когда атомы группируются вместе в твердом веществе, верхняя граница одной энергетической ямы сливается с ямой, принадлежащей следующему атому, и электроны на высоких уровнях могут свободно перемещаться от одного атомного ядра к другому, не оставаясь более присоединенными только к одному ядру, и переносить электрический ток в металле.

В целом свойство проводимости основывается на статистике Ферми – Дирака, которая запрещает этим слабо присоединенным электронам падать глубоко в атомные потенциальные ямы, где все энергетические уровни для крепко присоединенных электронов являются полностью занятыми. Если попробовать сжать металл, он сопротивляется давлению; металлы твердые. Причина, по которой металлы так тверды и так сопротивляются давлению, кроется в том, что в соответствии с принципом исключения Паули для фермионов электроны не могут быть сжаты теснее.

Энергетические уровни электронов в твердом теле рассчитываются при помощи квантово-механических волновых уравнений. Электроны, которые крепко присоединены к ядру, считаются находящимися в валентной зоне твердого тела, а электроны, которые свободно перемещаются от ядра к ядру, считаются находящимися в зоне проводимости. В диэлектрике все электроны находятся в валентной зоне, а в проводнике некоторые из них перемещены в зону проводимости[40]. В полупроводнике валентная зона заполнена и есть только узкая энергетическая прослойка между этой зоной и зоной проводимости, обычно в 1 эВ. В связи с этим электрону легко перепрыгнуть в зону проводимости и перенести электрический ток по материалу. Однако, в отличие от ситуации с проводником, электрон, получивший энергию, оставляет после себя дырку в валентной зоне. Точно так же, как и в описанном Дираком случае создания электронов и позитронов из энергии, это отсутствие отрицательно заряженного электрона в валентной зоне ведет себя – что касается электрических свойств, – как положительный заряд. Естественный полупроводник обычно обладает несколькими электронами в зоне проводимости и несколькими положительно заряженными дырками в валентной зоне, причем и электроны, и дырки могут переносить электрический ток. Можно представить себе, что электроны один за другим падают в дырку в валентной зоне и оставляют после себя дырку, в которую падает следующий электрон и так далее, а можно представить, что дырки – это настоящие положительно заряженные частицы, двигающиеся в противоположном направлении. Что касается электрического тока, эффект одинаков.

Естественные полупроводники довольно интересны, и не в последнюю очередь из-за того, что они представляют собой прекрасную аналогию создания пары электрон – позитрон. Но их электрические свойства с трудом поддаются контролю, а именно контроль сделал эти материалы столь важными для нашей повседневной жизни. Контроль достигается посредством создания искусственных полупроводников, один тип которых содержит большее количество свободных электронов, а другой – большее количество свободных «дырок».

И снова этот трюк просто понять, но не так просто заставить его работать на практике. Например, в кристалле германия каждый атом содержит на внешней оболочке четыре электрона (это квантовая кулинария на скорую руку, поэтому модель Бора вполне подходит для нее), которыми он «делится» с соседними атомами, чтобы создать химические связи, формирующие кристалл. Если германий «разбавлен» несколькими атомами мышьяка, атомы германия по-прежнему доминируют в структуре кристаллической решетки и атомам мышьяка приходится с трудом внедряться внутрь. В химическом смысле основное различие между германием и мышьяком заключается в том, что у мышьяка есть пятый электрон на внешней оболочке и мышьяку легче всего внедриться в решетку германия, проигнорировав этот дополнительный электрон и установив четыре химические связи, притворившись, что он является атомом германия. Дополнительные электроны, оставшиеся у атомов мышьяка, движутся по полосе проводимости получившегося полупроводника, а соответствующие им дырки отсутствуют. Такой кристалл называется полупроводником п-типа.

Альтернативой является легирование германия (в соответствии с нашим первоначальным примером) галлием, у которого только три электрона образуют химическую связь. В результате мы будто создаем дырки в валентной зоне каждого атома галлия, и валентные электроны перемещаются, прыгая в дырки, которые ведут себя подобно положительным зарядам. Такой кристалл называется полупроводником p-типа. Самое интересное происходит, если приложить друг к другу два разных типа полупроводников. Избыток положительного заряда, с одной стороны, и отрицательного – с другой создает разницу электрического потенциала, которая пытается вытолкнуть электроны в одном направлении и мешает их движению в другом. Такая объединенная пара полупроводниковых кристаллов называется диодом и дает возможность электрическому току двигаться лишь в одном направлении. Углубляясь в детали, стоит отметить, что электроны возможно заставить перепрыгнуть в дырку, и при этом будет излучаться свет. Диоды, которые излучают свет таким образом, называются светодиодами, или СИД (светоизлучающими диодами). Они используются в многочисленных дисплеях. Диод, работающий противоположным образом – поглощающий свет и выбрасывающий электрон из дырки в соседнюю зону проводимости, является фотодиодом, который используется, когда необходимо обеспечить пропускание тока лишь при попадании пучка света на полупроводник. Это основа для автоматически открывающихся дверей, которые срабатывают, когда вы приближаетесь к ним, попадая в зону светового пучка. Однако полупроводники не ограничиваются только диодами.

Если поместить вместе три полупроводниковых части, сложив их, как бутерброд (p-n-p или n-p-n), в результате получится транзистор (каждая из трех частей транзистора обычно подключена к электрическому току, поэтому их можно идентифицировать по трем паучьим лапам, торчащим из металлической или пластиковой оболочки, в которую заключен сам транзистор). Если правильно легировать материалы, возможно создать ситуацию, когда слабый поток электронов через n-p-контакт создает гораздо больший поток через другой контакт в бутерброде, то есть транзистор ведет себя как усилитель. Как знают любители электроники, диод и усилитель вместе составляют основу для конструирования аудиосистемы. Однако сегодня даже транзисторы являются весьма устарелыми устройствами, и вы не сможете найти никаких коробок с тремя ножками в своем радио, если, конечно, это не старый транзисторный приемник.

До 1950-х годов основным развлечением было громоздкое «радио» – устройство, которое хоть и называлось беспроводным, содержало множество проводов и светящихся вакуумных трубок, делавших то же самое, что сегодня делают полупроводники. К концу 1950-х началась транзисторная революция, и вместо больших светящихся электронных ламп стали использовать платы, на которых печатали проводящую схему и к которым припаивали транзисторы. Оставался один шаг до создания интегральной схемы, где бы все проводящие линии, полупроводниковые усилители, диоды и прочее располагались вместе, просто соединяясь друг с другом, образуя сердце радио, кассетного плеера или чего угодно. Одновременно с этим революция происходила и в компьютерной индустрии.

Как и старое радио, первые компьютеры были очень громоздкими. В них было множество электронных ламп и километры проводов. Даже пятьдесят лет назад, в первую полупроводниковую революцию, компьютер с такой же производительностью, что и современные, и размером с печатную машинку, потребовал бы целую комнату, чтобы разместить свой «мозг», и еще больше места для охлаждающих установок. Революция, которая превратила такую машину в планшет стоимостью несколько сотен долларов, помещающийся в руке, – это та же самая революция, которая превратила настольный приемник дедушки в радио размером с пачку сигарет и благоприятствовала переходу от транзистора к чипу.

Биологический мозг и электронный компьютер связаны с процессом переключения. Ваш мозг состоит примерно из 10 000 миллионов переключателей в виде нейронов, образуемых нервными клетками. Переключатели компьютера состоят из диодов и транзисторов. В 1950 году компьютер с тем же числом переключателей, что содержится в мозгу человека, имел бы размер с остров Манхэттен. Сегодня посредством соединения микрочипов можно разместить столько же переключателей в объеме, равном объему человеческого мозга, однако подключение такого компьютера представляет серьезную проблему, а потому он до сих пор не создан. Однако этот пример показывает, насколько мал чип даже в сравнении с транзистором.

Полупроводники, используемые в стандартных современных микрочипах, сделаны на основе силиката – в принципе из самого обыкновенного песка. При правильной стимуляции силикат пропускает электрический ток, а без стимуляции – не пропускает. Длинные кристаллы силиката по 10 см каждый разрезаются на тонкие (с лезвие бритвы) слои и далее на сотни маленьких прямоугольных чипов – каждый меньше спичечной головки, а затем на каждый чип, подобно утонченной греческой выпечке, слой за слоем наносится электрическая схема – эквивалент транзисторов, диодов, интегральных схем и всего остального. По сути один чип является целым компьютером, и микропроцессор занимается лишь получением информации и ее записью на чип. Чипы настолько дешевы в производстве (после того как были вложены значительные средства в разработку схемы и создание необходимых станков), что их можно производить сотнями, затем тестировать, а те, которые не работают, просто выбрасывать. Для создания одного чипа с нуля могут потребоваться миллионы долларов, но чтобы сделать сколько угодно тех, которые уже разработаны, достаточно будет и нескольких центов за штуку.

Таким образом, существует еще несколько повседневных вещей, которые связаны с миром кванта. Рецепты лишь из одной главы квантовой кулинарной книги дали нам цифровые часы, домашние компьютеры, электронную начинку, которая запускает спутник на орбиту (а иногда и не дает ему полететь вне зависимости от людей-операторов), мобильное телевидение, сотовые телефоны, стереосистемы и оглушительное Hi-Fi, а также лучшие слуховые аппараты, чтобы потом справляться с глухотой. Планшетные компьютеры стали реальностью, и вполне возможно, что не за горами появление устройств с искусственным интеллектом. Компьютеры, рассчитывающие приземление на Марс и исследующие Солнечную систему и ее пределы, являются первыми братьями чипов, которые управляют аркадами, и все они основаны на странном поведении электронов в соответствии с основными квантовыми законами. Но потенциал физики твердого тела не ограничивается даже могучими микропроцессорами.

 

Сверхпроводники

 

Как и полупроводники, сверхпроводники имеют логически верное название. Сверхпроводник – это вещество, которое проводит электричество без какого-либо видимого сопротивления. Это самое близкое к вечному двигателю из того, что мы, вероятно, когда-либо сможем обнаружить, – это не совсем создание нечто из ничего, но редкий пример в физике, когда ты получаешь за свои деньги все и тебя при этом не обманывают. Сверхпроводимость можно объяснить процессом связывания пары электронов друг с другом и их совместного движения. Хотя каждый электрон имеет полуцелый спин и, соответственно, подчиняется статистике Ферми – Дирака и принципу исключения, пара электронов при некоторых условиях может вести себя как одна частица с целым спином. Такая частица не запрещена принципом исключения и удовлетворяет той же статистике Бозе – Эйнштейна, которая квантово-механическим образом описывает поведение фотонов.

Голландский физик Камерлинг-Оннес открыл сверхпроводимость в 1911 году, когда обнаружил, что ртуть полностью теряет электрическое сопротивление при охлаждении ниже 4,2 градуса в единицах абсолютной температурной шкалы (4,2 градуса Кельвина примерно равны -269 градусам Цельсия). В 1913 году за свой труд по физике низких температур Оннес получил Нобелевскую премию, однако она была вручена за другое достижение – получение жидкого гелия, а сверхпроводимость не могла найти полноценного объяснения до 1957 года, когда Джон Бардин, Леон Купер и Роберт Шриффер выдвинули теорию, которая в 1972 году принесла им Нобелевскую премию[41]. Это объяснение зависит от того, как спаренные электроны взаимодействуют с атомами в кристаллической решетке. Один электрон взаимодействует с кристаллом, в результате чего изменяется взаимодействие кристалла с другим электроном пары. Таким образом, несмотря на естественную склонность отталкивать друг друга, пара электронов образует слабую связь, достаточную для того, чтобы перейти от статистики Ферми – Дирака к статистике Бозе – Эйнштейна. Не все вещества могут быть сверхпроводниками, и даже у тех, которые имеют это свойство, мельчайшее колебание атомов в кристаллической решетке разрушает электронные пары, в связи с чем сверхпроводимость наблюдается только при очень низких температурах – в диапазоне от 1 до 10 градусов Кельвина. Некоторые вещества становятся сверхпроводниками ниже определенной критической температуры, которая различна для разных веществ, но всегда одинакова для одного и того же вещества. Выше этой температуры электронные пары разрушаются и вещество обладает нормальными электрическими свойствами.

Эта теория подтверждается тем фактом, что материалы, являющиеся хорошими проводниками при комнатной температуре, не становятся лучшими сверхпроводниками. Обычный «нормальный» проводник позволяет электронам двигаться свободно именно потому, что они не сильно взаимодействуют с атомами кристаллической решетки, а без взаимодействия электронов с атомами невозможно образование электронных пар, необходимое для появления низкотемпературной сверхпроводимости.

Очень жаль, что сверхпроводники должны быть настолько холодны для появления этого феномена, ведь легко представить потенциальные удобства в использовании сверхпроводников. Самый очевидный пример – это передача электричества по проводам без потери энергии. У сверхпроводников есть и другие любопытные свойства. В нормально проводящий металл может проникать магнитное поле, однако сверхпроводник образует на своей поверхности электрические токи, которые отталкивают и вытесняют магнитное поле. Таким образом получается идеальный экран от нежелательного воздействия магнитных полей, однако он непрактичен ввиду необходимости в охлаждении до нескольких градусов Кельвина.

 

Рис. 7.2. На джозефсоновском контакте (когда два сверхпроводника разделены слоем диэлектрика) наблюдаются странные явления. При некоторых условиях электроны способны туннелировать через барьер.

 

Когда два сверхпроводника разделены слоем диэлектрика, можно ожидать отсутствия протекания тока, однако стоит вспомнить, что электрон подчиняется тем же квантовым правилам, которые позволяют частицам туннелировать из ядра. Если барьер достаточно тонок, то велика вероятность, что электронные пары смогут преодолеть его, однако это не согласуется со здравым смыслом. Через подобные контакты (называемые джозефсоновскими контактами) не протекает ток, если на контакте существует потенциальный барьер, но ток идет , если разница потенциалов равна нулю. Двойной джозефсоновский контакт, образованный двумя сверхпроводниками, изогнутыми в форме камертонов и соединенными парными концами, между которыми помещен диэлектрик, может демонстрировать квантово-механическое поведение электрона по подобию эксперимента с двумя прорезями. Мы углубимся в эту тему в следующей главе и убедимся, что это краеугольный камень самых странных свойств квантового мира.

 

Рис. 7.3. Два джозефсоновских контакта могут быть объединены в систему, аналогичную используемой в эксперименте со светом, проходящим через две прорези. В такой системе может наблюдаться интерференция между электронами – одно из многих указаний на волновую природу этих «частиц».

 

Объединяться, создавая псевдобозоны, нарушающие при низких температурах обычные законы физики, могут не только электроны. Атомы гелия проделывают схожий трюк, который лежит в основе свойства жидкого гелия, называемого сверхтекучестью. Когда вы размешиваете кофе, а затем останавливаетесь, кружение жидкости постепенно замедляется и в итоге прекращается из-за сил трения и вязкости в жидкости. Если попробовать сделать то же самое с гелием, охлажденным до 2,17 градуса Кельвина, вращение не прекратится никогда. Даже если оставить сверхтекучий гелий сам по себе, он может выползти из сосуда через край, и, вместо того чтобы с трудом течь по узкой трубке, сверхтекучий гелий течет тем легче, чем уже трубка, в которую он заключен. Это странное поведение может быть объяснено статистикой Бозе – Эйнштейна, и хотя опять же необходимость столь сильного охлаждения не дает возможности найти практическое применение этому явлению, поведение атомов при столь низких температурах, как и поведение электронов при сверхпроводимости, дает возможность увидеть квантовый мир в действии. Если поместить немного сверхтекучего гелия в крошечное ведерко диаметром около 2 мм и начать раскручивать его, то первое время гелий останется в покое. По мере увеличения скорости вращения ведерка при некотором критическом угловом моменте весь гелий начнет вращаться, перейдя из одного квантового состояния в другое. Квантовые законы запрещают существование промежуточного состояния, соответствующего промежуточному значению углового момента, и можно наблюдать, как все атомы гелия, которые содержатся в видимом объеме (гораздо большем, чем атом или частицы квантового мира), ведут себя в соответствии с квантовыми законами. Как мы увидим позже, сверхпроводимость может применяться и к объектам человеческого, а не только атомного масштаба. Однако квантовая теория не ограничивается миром физики или даже физических наук. Стоит вспомнить, что вся химия сегодня понимается в терминах основных квантовых законов. Химия – это наука о молекулах, а не об индивидуальных атомах или субатомных частицах, и есть молекулы, которые крайне важны для нас, – молекулы жизни, в том числе ДНК. Наше современное понимание жизни само по себе неразрывно связано с квантовой теорией.

 

Сама жизнь

 

Помимо научной важности квантовой теории для химии жизни, существуют прямые личные связи между некоторыми ведущими учеными из квантовой области и открытием двойной спирали ДНК – молекулы жизни. Законы, описывающие дифракцию рентгеновских лучей на кристаллах, были открыты Лоренсом Брэггом и его отцом Уильямом, работавшими в Кавендишской лаборатории, за несколько лет до Первой мировой войны. За работу они получили совместную Нобелевскую премию, при этом Лоренс был настолько молод (в 1915 году он служил офицером по Франции), что был еще жив (несмотря на то что служил во Франции в Первую мировую), когда праздновался 50-летний юбилей этого события. Брэгг-старший изначально завоевал репутацию, работая над изучением альфа-, бета– и гамма-излучений, и в последние годы первого десятилетия

XX века показал, что и гамма-излучение, и рентгеновские лучи в некоторых аспектах ведут себя, как частицы. Однако закон Брэгга о рентгеновской дифракции, ставший ключом к раскрытию тайн структуры кристаллов, основывается на волновых свойствах рентгеновских лучей, отраженных от атомов кристалла. Получающиеся в результате картины интерференции зависят от расстояния между атомами в кристалле и длины волны рентгеновского излучения, и в умелых руках этот инструмент позволил показать расположение индивидуальных атомов в даже самых сложных кристаллических структурах.

Идея, которая привела к закону Брэгга, появилась в 1912 году, в основном благодаря Лоренсу Брэггу. К концу 1930-х годов он занимал должность Кавендишского профессора физики в Кембридже (вслед за Резерфордом после его смерти в 1937 году) и среди прочего все еще активно занимался работой над рентгеновскими лучами. Именно в то десятилетие начала развиваться новая наука – биофизика. Новаторская работа Дж. Д. Бернала по определению структуры и состава биологических молекул посредством рентгеновской дифрактометрии стала началом подробных исследований сложных белковых молекул, определяющих многие функции жизни. Исследователи Макс Перуц и Джон Кендрю в 1962 году получили Нобелевскую премию по химии за определение структуры гемоглобина (молекула крови, которая переносит кислород) и миоглобина (мышечный белок), что стало результатом исследования, начатого в Кембридже до Второй мировой войны.

Однако в популярной мифологии с рождением молекулярной биологии связывают имена «бунтовщика» Фрэнсиса Крика и Джеймса Уотсона, которые в начале 1950-х годов разработали модель двойной спирали ДНК и также в 1962 году получили Нобелевскую премию по физиологии и медицине (совместно с Морисом Уилкинсом). Вызывает восхищение та легкость, с которой члены Нобелевского комитета наградили разных новаторов в области биофизики, дав в один год премию с пометками «химия» и «физиология», однако жаль, что строгие правила, запрещающие посмертные награды, не дали возможности наградить вместе с Криком, Уотсоном и Уилкинсом также коллегу Уилкинса Розалинд Франклин, выполнившую большую часть ключевой кристаллографической работы, которая привела к раскрытию структуры ДНК. Франклин скончалась в 1958 году в возрасте тридцати семи лет. В популярной мифологии она занимает место яростной феминистки из книги Уотсона «Двойная спираль». Книга эта весьма занятна и полна ярких личных воспоминаний о времени, проведенном в Кембридже, однако далека от честного и точного описания коллег и самого автора.

Работа, которая привела Уотсона и Крика к структуре ДНК, проводилась в Кавендишской лаборатории, руководителем которой все еще был Брэгг. В своей книге Уотсон, который в те годы был молодым американцем, приехавшим в Европу для научной работы, описывает, как впервые познакомился с Брэггом, когда пытался получить работу в Кавендишской лаборатории. Седоусому Брэггу было за шестьдесят, и, будучи символом научного прошлого, он поразил молодого Уотсона, показавшись ему человеком, который проводил большую часть дней в солидных лондонских клубах. Однако работа была получена, и Уотсон удивился тому интересу, который Брэгг проявил к исследованию, давая бесценные, хотя и не всегда приятные, советы на пути к решению проблемы ДНК. Фрэнсис Крик, хотя и был старше Уотсона, с формальной точки зрения все еще оставался студентом, работая над докторской. Как и у многих других ученых того поколения, его научная карьера была прервана Второй мировой войной, впрочем, в его случае это, возможно, оказалось к лучшему. Он изначально учился на физика и только к концу 1940-х годов перешел в биологические науки. Этому решению способствовала в том числе небольшая книга, написанная Шрёдингером и опубликованная в 1944 году. Это заслуживающее внимания сочинение под названием «Что такое жизнь?» все еще есть в продаже и является классикой, выдвинувшей идею о том, что фундаментальные молекулы жизни могут быть поняты с помощью законов физики. Важными молекулами, которые нужно объяснить таким образом, являются гены, несущие информацию об устройстве живого организма и о его функционировании. Когда Шрёдингер написал «Что такое жизнь?», считалось, что гены, как и многие другие молекулы жизни, состоят из белка. Впрочем, как раз в то время было открыто, что наследственные особенности в действительности передаются молекулами дезоксирибонуклеиновой кислоты, которую обнаружили в центральных ядрах биологических клеток[42]. Это и есть ДНК, и Уотсон с Криком определили ее структуру, используя данные рентгеновских исследований, полученные Уилкинсом и Франклин.

Я в деталях описал структуру ДНК и ее роль в жизненных процессах в другой книге[43]. Ключевой особенностью является то, что ДНК – это двойная молекула, созданная из двух нитей, скрученных вокруг друг друга. Порядок, в котором вдоль цепочки ДНК выстроены различные химические компоненты, называемые основаниями, несет информацию, которую клетка использует для создания молекул белка, выполняющих всю работу– от переноса кислорода в крови до функционирования мышц. Молекулярная цепочка ДНК может частично распутываться, открывая цепь оснований, которые становятся шаблоном для создания других молекул. Также она может раскрываться полностью и точно копировать себя согласно каждому основанию цепи, которому соответствует противоположное основание, тем самым создавая зеркальное отображение, которое формирует новую двойную спираль. В качестве исходных материалов оба процесса используют химический бульон внутри клетки. И оба процесса играют важнейшую роль в самом существовании жизни. Сегодня человек научился внедряться в код ДНК, изменяя инструкции, зашифрованные в фундаменте жизни, – по крайней мере, на примере простейших живых организмов.

Это является основой генной инженерии. Фрагменты генетического материала – ДНК – могут быть созданы совмещением химических и биологических техник, и микроорганизмы, подобные бактериям, можно заставить взять эту ДНК из химического бульона вокруг них и внести ее в собственный генетический код. Если в штамм бактерии добавить закодированную информацию о том, как необходимо производить инсулин, ее собственные биологические механизмы сделают это, создав именно то, что требуется диабетикам для ведения нормальной жизни. Близка к реальности мечта об изменении человеческого генетического материала, с тем чтобы в первую очередь устранить дефекты, создающие проблемы вроде диабета, и нет теоретической причины не добиться этого результата. Мы уже способны использовать методы генной инженерии на примере других животных и растений, создавая устойчивые штаммы для производства пищи и удовлетворения других нужд человека.

Подробности опять-таки можно найти в других книгах[44]. Важным является то, что мы все слышали о генной инженерии, читали о ее многообещающем будущем и об опасностях, которые она таит. Однако очень немногие осознают, что понимание молекул жизни, которое делает возможным генную инженерию, зависит от нашего современного понимания квантовой механики, без которой мы не были бы способны интерпретировать данные рентгеновской дифрактометрии, не говоря уже обо всем остальном. Чтобы понять, как конструировать или разбирать на фрагменты гены, мы должны понимать, как и почему атомы образуют лишь определенные конфигурации на определенных расстояниях друг от друга и имеют химические связи определенной силы. Это понимание является даром квантовой физики химии и молекулярной биологии.

Я рассказал об этом несколько больше, чем мог бы, исключительно из-за одного члена Университетского колледжа Уэльса. В марте 1983 года в опубликованном в журнале New Scientist отзыве я вскользь упомянул, что «без квантовой теории не было бы ни генной инженерии, ни твердотельных компьютеров, ни атомных электростанций (или бомб)». В ответ на мой отзыв корреспондент из этого уважаемого научного учреждения написал жалобу, заявив, что он сыт по горло тем, что генную инженерию упоминают для красного словца везде, где надо и где не надо, и что Джон Гриббин не имеет права на такие грубые замечания. Какая вообще связь, даже тонкая, может быть между квантовой теорией и генетикой? Надеюсь, в этот раз связь очевидна. На каком-то уровне приятно понимать, что обращение Крика к биофизике было явно спровоцировано Шрёдингером и что работа, которая привела к открытию двойной спирали ДНК, велась под формальным, хоть порой и неохотным, руководством Лоуренса Брэгга. На более глубоком уровне, конечно, становится понятно, что интерес пионеров вроде Брэгга и Шрёдингера, а также следующего поколения физиков, включая Кендрю, Перуца, Уилкинса и Франклин, к биологическим проблемам был обусловлен тем, что проблемы эти, как заметил Шрёдингер, были просто другим типом физики, который занимался огромным количеством атомов в крупных молекулах.

Совершенно не отказываясь от своего замечания в New Scientist, я готов лучше обосновать его. Если попросить умного и начитанного, но при этом далекого от науки человека перечислить важнейшие достижения науки, которые внесли существенный вклад в нашу жизнь, и предположить, какие возможные выгоды и опасности принесет научный прогресс в ближайшем будущем, он точно включит в список компьютерные технологии (автоматизация, безработица, развлечения, роботы), атомную энергию (бомба, крылатые ракеты, электростанции), генную инженерию (новые лекарства, клонирование, угроза созданных человеком заболеваний, повышение урожайности) и лазеры (голография, лучи смерти, микрохирургия, коммуникации). Вероятно, большая часть опрошенных людей будут знать о теории относительности, не оказывающей влияния на повседневную жизнь, но вряд ли хоть один заметит, что каждое достижение из списка уходит корнями в квантовую механику – направление науки, о котором они, возможно, никогда не слышали и которое наверняка не понимают.

Они не одиноки. Все эти достижения стали возможны благодаря квантовой кулинарии, использующей законы, которые кажутся работоспособными, хотя никто в действительности не понимает, почему они работают. Несмотря на достижения последних восьмидесяти лет, вряд ли хоть кто-то понимает, почему работают квантовые рецепты. Остаток этой книги посвящен исследованию ряда самых глубоких тайн, которые зачастую так и остаются покрытыми мраком, а также обзору некоторых возможностей и парадоксов.

 

Часть третья

…И не только

 

Лучше обсудить вопрос без урегулирования, нежели урегулировать его без обсуждения.

Жозеф Жубер 1754-1824

 

Глава восьмая


Дата добавления: 2018-10-26; просмотров: 378; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!