Основные стадии решения задач



Решение задач с помощью программы ANSYSсостоит из трех этапов: препроцессорная (предварительная) подготовка (Preprocessing), получение решения (Solving the Equations) и постпроцессорная обработка результатов (Postprocessing). Приведем краткое содержание основных шагов при выполнении каждого из этапов. Более подробное описание с примерами приведено ниже [10].

На стадии препроцессорной подготовки выполняется выбор типа расчета, построение модели и приложение нагрузок (включая и граничные условия). Здесь задаются необходимые для решения исходные данные. Пользователь выбирает координатные системы и типы конечных элементов, указывает упругие постоянные и физико-механические свойства материала, строит твердотельную модель и сетку конечных элементов, выполняет необходимые действия с узлами и элементами сетки, задает уравнения связи и ограничения. Можно также использовать модуль статистического учета для оценки ожидаемых размеров файлов и затрат ресурсов памяти.

В программе ANSYSкоординатные системы используются для размещения в пространстве геометрических объектов, определения направлений степеней свободы в узлах сетки, задания свойств материала в разных направлениях, для управления графическим изображением и содержанием выходных результатов. Можно использовать декартовы, цилиндрические, сферические, эллиптические и тороидальные системы координат. Все они могут быть расположены и ориентированы в пространстве произвольным образом.

Исходные данные, введенные при препроцессорной подготовке, становятся частью центральной базы данных программы. Эта база данных разделена на таблицы координатных систем, типов элементов, свойств материала, ключевых точек, узлов сетки, нагрузок и т.д. Как только в таблице появляются некоторые данные, на них становится возможным ссылаться по входному номеру таблицы. Например, могут быть определены несколько координатных систем, которые активизируются простой ссылкой на соответствующий номер системы (входной номер таблицы). Кроме того, существует набор команд управления базой данных, чтобы выделить некоторую ее часть для определенных операций. Выделение необходимых данных можно проводить по местоположению геометрических объектов, графическим примитивам твердой модели, типам конечных элементов, видам материалов, номерам узлов и элементов и т.п. Так, например, сложные граничные условия можно легко указать или изменить, используя геометрическое представление модели, а не номера узлов или элементов.

Пользователь имеет возможность ввести обширную информацию, относящуюся к данной расчетной модели, но программа будет использовать только ту ее часть из базы данных, которая необходима для определенного вида расчета. Вид расчета задается при входе в программу.

Еще одним способом выбора данных является разделение модели на компоненты или слои, представляющие собой группы геометрических объектов, которые выделены пользователем для большей наглядности. Для наглядности компоненты могут быть окрашены в разные цвета.

В программе ANSYSсуществуют три разных способа построения геометрической модели: импорт модели, предварительно построенной другой программой, твердотельное моделирование и непосредственное создание модели в интерактивном режиме работы спрограммой. Можно выбрать любой из этих методов или использовать их комбинации для построения расчетной модели.

Программа ANSYSпозволяет наносить сетку на модель, импортированную из другой программы, а также имеет возможность менять геометрию модели с целью упрощения расчета. Использование автоматических средств позволяет улучшить модель за счет устранения ненужных зазоров, перекрытий или взаимных внедрений ее частей, а также выполнить слияние объектов и создание объемов. Это дает возможность получить значительно более простую расчетную модель путем ее "подчистки" и получения приемлемого варианта. Процедуры упрощения позволяют наилучшим образом подготовить модель для нанесения сетки за счет удаления отверстий, полостей и выпуклостей, исключения мелких подробностей.

В программе ANSYSдоступны следующие два способа моделирования: нисходящий и восходящий. В первом случае пользователь указываем только самый высокий порядок сложности объектов модели. Используемые обычно объекты (такие, как сферы и призмы, т.е. формы, которые называются геометрическими примитивами) могут быть созданы за одно обращение к меню. Например, пользователь определяет объемный примитив, а программа автоматически находит связанные с ним поверхности, линии и ключевые точки. Примитивы позволяют непосредственно указывать геометрические формы. В программе ANSYSможно легко и быстро определить в двумерном случае такие формы, как окружности и прямоугольники, или параллелепипеды, сферы, конусы и цилиндры в трехмерном. После того как геометрические объекты указаны (с помощью примитивов, считыванием данных из файлов формата. IGESили непосредственным построением), к ним можно применять операции булевой алгебры. При импортировании геометрии в формате. IGESпользователь имеет возможность управлять значениями допусков на слияние объектов модели, выявлять "проблемные" области и возможные ошибки.

В случае непосредственного создания модели в интерактивном режиме работы чаще всего применяется так называемое "восходящее моделирование". При восходящем моделировании пользователь строит модель, начиная с объектов самого низкого порядка. Сначала задаются ключевые точки, затем связанные с ними линии, поверхности и объёмы - именно в таком порядке.

Независимо от используемого способа построения модели имеется возможность применять операции булевой алгебры для объединения наборов данных и за счет этого как бы создавать "скульптуру" модели. Программа имеет набор таких булевых операций, как сложение, вычитание, пересечение, деление, склеивание и объединение.

Еще одним эффективным методом построения модели в программе ANSYSявляется построение некоторой поверхности с помощью так называемого метода "обтягивания каркаса". С помощью этого метода можно задать некоторый набор поперечных сечений, а затем дать программе команду построить поверхность, которая будет точно соответствовать указанным сечениям.

После того, как построена модель, строится ее конечно-элементный аналог (т.е. сетка узлов и элементов).

Библиотека конечных элементов программы ANSYSсодержит более 80 типов, каждый из которых определяет, среди прочего, применимость элемента к той или иной области расчетов (прочностной, тепловой, магнитный и электрический анализы, движение жидкости или связанные задачи), характерную форму элемента (линейную, плоскую, в виде бруска и т.д.), а также двухмерность (2-D) или трехмерность (3-D) элемента.

После выбора типа элементов необходимо задать их константы. Константы элемента - это свойства, специфичные для данного типа элемента. Например, для элемента ВЕАМЗ - балочного 2-D элемента - константами являются площадь поперечного сечения, момент инерции, высота и др.

Свойства материала требуются для большинства типов элементов. В зависимости от области приложения свойства могут быть линейными, нелинейными и (или) анизотропными.

Линейные свойства могут зависеть или не зависеть от температуры, быть изотропными или ортотропными. Зависимость свойств от температуры имеет форму полинома (вплоть до четвертой степени) или задается таблично.

Нелинейные соотношения, такие как кривые деформирования, кривые намагничивания материала, кривые ползучести, обычно задаются в виде таблицы.

В программе ANSYSпредусмотрено четыре способа генерации сетки: использование метода экструзии, создание упорядоченной сетки, создание произвольной сетки (автоматически) и адаптивное построение.

Метод экструзии (выдавливания) используется для превращения областей двумерной сетки в трехмерные объекты, состоящие из параллелепипедов, клиновидных элементов или их комбинации. Процесс экструзии осуществляется с помощью процедур смещения из плоскости, буксировки, поступательного и вращательного перемещений.

Программа ANSYSимеет в своем составе генераторы произвольной сетки, с помощью которых сетка может наноситься непосредственно на модель достаточно сложной геометрии без необходимости строить сетку для отдельных частей и затем собирать их в единую модель. Произвольную сетку можно строить из треугольных, четырехугольных и четырехгранных элементов.

При произвольном построении сетки реализован алгоритм разумного выбора размеров конечного элемента, позволяющий строить сетку элементов с учетом кривизны поверхности модели и наилучшего отображения ее реальной геометрии. Кроме того, можно выбрать мелкую или крупную сетку элементов, указав в качестве управляющего параметра любое число из диапазона от единицы до десяти.

Построение упорядоченной сетки требует предварительного разбиения модели на отдельные составные части с простой геометрией, а затем - выбора таких атрибутов элемента и соответствующих команд управления качеством сетки, чтобы можно было построить конечно-элементную модель с упорядоченной сеткой. Создаваемая программой ANSYSупорядоченная сетка может состоять из шестигранных, четырехугольных и треугольных элементов. Для получения треугольной сетки программа выделяет области модели, предназначенные для нанесения упорядоченной сетки, создает сначала четырехугольную сетку, а затем превращает ее в сетку из треугольных элементов.

В качестве дополнительного способа построения упорядоченной сетки на некоторой поверхности используется деление противоположных граничных линий этой поверхности таким образом, чтобы можно было осуществить переход от одного размера сетки к другому. Построение упорядоченной сетки переменного размера возможно только для поверхностей, ограниченных четырьмя линиями. При большем числе ограничивающих линий можно выполнить операцию их конкатенации.

При построении сетки возможно также указание общего размера элемента, деление граничной линии, указание размеров в окрестности заданных геометрических точек, коэффициентов растяжения или сжатия вдали от границ, задание ограничения на кривизну и возможность задания "жестких" точек (т.е. задание точного положения узла вместе с размерами сетки в такой точке).

По сравнению с произвольной сеткой упорядоченная плоская сетка может содержать только четырехугольные или треугольные элементы, а упорядоченная объемная сетка - объемные шестигранные элементы.

При использовании подхода непосредственного создания модели в интерактивном режиме конечно-элементную модель можно построить, определив положение каждого узла, а также размеры форму и связность для всех элементов сетки. Узлы используются для того, чтобы определить положение элементов в пространстве, а элементы определяют связность модели. И те, и другие можно задавать нам более удобным способом, не заботясь об эффективно ста решения.

Адаптивное построение сетки состоит в том, что после создания модели и задания граничных условий программа генерирует конечно-элементную сетку, выполняет расчет, оценивает ошибку за счет сеточной дискретизации и меняет размер сетки от решения к решению до тех пор, пока расчетная погрешность станет меньше некоторой наперед заданной величины (или пока не будет достигнуто i-тое установленное число итераций).

Возможности программы ANSYSдопускают модификацию конечно-элементной сетки. Например, могут быть изменены атрибуты узлов и элементов. Если модель состоит из повторяющихся областей, то можно создать сетку только для некоторой области модели, а затем сделать копию этой области. После того как геометрическая модель покрывается сеткой конечных элементов, программа автоматически обеспечивает их взаимно-перекрестный контроль, чтобы гарантировать правильность выполняемых видоизменений сеточной модели. Такие проверки предотвращают некорректное уничтожение или порчу данных, относящихся к твердотельной и сеточной моделям. Так, например, ключевые точки, линии, поверхности или объемы сеточной модели нельзя уничтожить или переместить до тех пор, пока пользователь явным образом не потребует от программы отменить их автоматический контроль.

 


Дата добавления: 2018-09-22; просмотров: 253; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!