Аккумулирование электричества 6 страница



 Когда такая компоновка объединяет один электроположительный атом с другим электроотрицательным атомом, результирующая структура обычно представляет собой простой куб, с атомами каждого элемента, занимающими противоположные углы куба. Такая структура называется хлоридом натрия – самый знакомый член семейства соединений, кристаллизующихся в такой форме. Таблица 7 предоставляет межатомные расстояния ряда обычных кристаллов вида NaCl. Из нее видно, что определенные характеристики вращения, свойственные элементам, входящим в совокупности, переносятся и на их соединения. Второй элемент в каждой группе показывает то же предпочтение для вращения на основе вибрации два, с каким мы сталкивались при исследовании структур элементов. Здесь, вновь, предпочтение распространяется на некоторые из последующих элементов. И в таких сериях соединений как CaO, SeN, TiC, на протяжении всех серий, один компонент сохраняет статус вибрации два, а результирующие действующие вращения представляют 5½, 7, 8½, а не 6, 8 и 10. Как и в ранее исследованных структурах элементов, в соединениях, элементы самых низких групп обладают измерениями с недействующей силой. Если у обоих компонентов действующие измерения не одинаковы, вся сила вращения более активного компонента действует в его оставшихся измерениях, а действующее вращение в неактивном измерении равно единице. Например, величина ln t для магнитного вращения 3 составляет 1,099 в трех измерениях или 0,7324 в двух измерениях. Если это двумерное вращение комбинируется с трехмерным магнитным вращением x, результирующая величина ln t равняется (0.7324 x)½, геометрическому среднему индивидуальных величин в двух измерениях и x в третьем. Средняя величина для всех трех измерений составляет (0.7324 x2)¹/3.

Не активность измерений в более низких группах играет лишь незначительную роль в структурах элементов, что может быть видно из того факта, что ей не уделяется никакого внимания вплоть до почти конца Таблицы 8.

Соединения лития с одновалентными, отрицательными элементами следуют обычному паттерну и включены в таблицу 7, но в соединениях с двухвалентными элементами, паттерны не обычные, поэтому они опущены в таблице 8. Как мы увидим в главе 6, необычность возникает за счет того, что два атома лития в молекуле типа CaF2 действуют как радикал, а не как независимые составляющие молекулы.

 

Таблица 8: Расстояния – Соединения вида CaF2

Соединение

Удельное вращение

Расстояние

Магнитное

Электрическое

Выч .

Набл .

  Na2O   3-2½   3(2)     2,39   2,40
  Na2S   3-2½   4-3   4   2,83   2,83
  Na2Se   3-2½   4-4   4   2,94   2,95
  Na2Te   3-2½   5-4½   4   3,13   3,17
  Mg2Si   3-3   4-3   5   2,73   2,77
  Mg2Ge   3-3   4-4     2,76   2,76
  Mg2Sn   3-3   5-4     2,90   2,93
  Mg2Pb   3-3   5-4½     2,94   2,96
  K2O   4-3   3(2)     2,79   2,79
  K2S   4-3   4-3   4   3,17   3,20
  K2Se   4-3   4-4   4   3,30   3,33
  K2Te   4-3   5-4½   4   3,51   3,53
  CaF2   4-3   3(2)     2,38   2,36
  Rb2O   4-4   3(2)     2,94   2,92
  Rb2S   4-4   4-3   4   3,30   3,31
  SrF2   4-4   3(2)     2,50   2,50
  SrCl2   4-4   4-3     2,98   3,03
  BaF2   5-4   3(2)     2,68   2,68
  BaCl2   5-4½   4-3     3,17   3,18*

 

Таблицы 7 и 8, две таблицы для нормальной ориентации, предлагают впечатляющее подтверждение правомочности теоретических находок. Когда имеешь дело с межатомными расстояниями, одной из проблем является: Из-за относительно небольшого общего числа элементов, количество элементов, к которым можно применить любую конкретную магнитную комбинацию вращения, тоже невелико. Отсюда, с первого взгляда, довольно трудно установить аутентичность величин вращения. Но это не относится к соединениям обычного типа, поскольку они более многочисленны и менее переменчивы. В таблицах есть два элемента, сера и хлор, обладающие разными магнитными вращениями при разных условиях. В кристаллах вида CaF2 и в виде комбинаций с элементами Группы 4А они обладают вращением 4-3. В других соединениях вида NaCl они обладают вращениями 3½-3½. Имеются и еще два элемента, каждый из которых, согласно ныне доступной информации, отклоняется от нормальных вращений в одном из перечисленных соединений. Все элементы, входящие в 60 соединений в двух таблицах обладают одинаковыми магнитными вращениями в каждом соединении, в котором они участвуют.

Кроме того, когда принимаются во внимание различия между совокупностями элементов и соединениями, между вращениями в соединениях и удельными вращениями тех же элементов в совокупностях элементов имеется согласованность. Самое известное различие такого вида является результатом того, что элемент Деления IV в соединении играет чисто отрицательную роль. По этой причине, он принимает магнитное вращение следующей более высокой группы. В совокупностях элементов, половина атомов переориентируется так, чтобы участвовать в положительной роли. Поэтому, они стремятся сохранять обычное вращение группы, к которой принадлежат на самом деле. Например, элементы Группы 3А Деления IV, германий, мышьяк, селен и бром, обладают обычным удельным вращением их группы, 4-3, в кристаллах элементов, но в соединениях они принимают удельное вращение 4-4 Группы 3В, выступая в качестве отрицательных членов этой группы.

Еще одно различие между двумя классами структур в том, что элементы более высоких групп, имеющие выбор расширения вращения на вторую единицу вибрации, меньше делают это, если комбинируются с элементом, вращающимся исключительно на основе вибрации один. Кроме этих отклонений по известным причинам, величины удельного магнитного вращения, определенные для элементов в главе 2, применимы и к соединениям. Такая эквивалентность не применяется к удельным электрическим вращениям. Поскольку они определяются способом, которым вращения составляющих каждой совокупности ориентируются относительно друг друга, в двух классах структур отношение другое.

Применение тех же уравнений и, в общем, тех же числовых величин к вычислению расстояний в элементах и соединениях резко контрастирует с традиционной теорией, которая рассматривает межатомное расстояние как определяемое “размерами” атомов. Например, атом или “ион” натрия в кристалле NaCl имеет радиус только 60% радиуса атома в совокупности, состоящей из элементов. Если этот атом участвует в комбинации, которая не включается в класс “ионных”, нынешняя теория предлагает другой “размер” – то, что называется “ковалентным” радиусом. Насколько мы можем сказать, необходимость допущения необычного изменения в размере одного и того же объекта устраняется находкой, что изменения межатомного расстояния не имеют ничего общего с размерами атомов, а просто указывают на различия в положении равновесия между силами, направленными вовне и наружу, действию которых подвергаются атомы.

Другой вид ориентации, формирующий относительно простое бинарное соединение, - комбинация вращений, которую мы обнаруживаем в ромбовидной структуре. Как у элементов, это равновесие между атомом элемента Деления IV и атомом элемента Деления III, требование, чтобы t1+ t2 = 8. Очевидно, что этому требованию удовлетворяют только те элементы, чье отрицательное смещение вращения (валентность) равна 4, но любой элемент Деления IV может устанавливать равновесие такого вида с подходящим элементом Деления III.

С кубическим ромбовидным классом кристаллов типа сульфида цинка тесно связана шестиугольная структура, основанная на той же ориентации и содержащая те же равные пропорции двух составляющих. Поскольку в двух формах эти контролирующие факторы идентичны, кристаллы класса шестиугольной окиси цинка обладают теми же межатомными расстояниями, что и соответствующие структуры сульфида цинка. В примерах, когда межатомные силы одинаковы, существует небольшое вероятностное преимущество одного вида кристалла над другим, и при подходящих условиях может формироваться любой из этих кристаллов. Таблица 9 демонстрирует межатомные расстояния для некоторых обычных кристаллов этих двух классов.

 

Таблица 9: Расстояния – Соединения ромбовидного типа

Соединение

Удельное вращение

Расстояние

Магнитное

Электрическое

ZnS (кубический) класс

Выч .

Набл .

  AlP 3-4 3½-3½   10   2,32   2,35
  AlAs 3-4 4-4   10   2,62   2,43
  AlSb 3-4 5-4½   10   2,62   2,66
  SiC 3-4 3(2)   10   1,94   1,93*
  CuCl 3-4 3½-3½   10   2,32   2,35
  CuBr 3-4 4-4   10   2,46   2,46
  CuI 3-4 5-4   10   2,59   2,62
  ZnS 3-4 3½-3½   10   2,32   2,36
  ZnSe 3-4 4-4   10   2,46   2,45
  ZnTe 3-4 5-4½   10   2,62   2,63*
  GaP 3-4 3½-3½   10   2,32   2,36
  GaAs 3-4 4-4   10   2,46   2,43
  GaSb 3-4 5-4½   10   2,62   2,65
  AgI 4-4 5-4   10   2,80   2,81
  CdS 4-4 3½-3½   10   2,51   2,52
  CdTe 4-4 5-4   10   2,80   2,78
  InP 4-4 3½-3½   10   2,51   2,54
  InAs 4-4 4-4   10   2,66   2,62
  InSb 4-4 5-4   10   2,80   2,80
  AlN 3-4 3(2)   10   1,94   1,90
  ZnO 3-4 3(2)   10   1,94   1,95
  ZnS 3-4 3½-3½   10   2,32   2,33
  GaN 3-4 3(2)   10   1,94   1,94
  AgI 4-4 5-4   10   2,80   2,81
  CdS 4-4 3½-3½   10   2,51   2,51
  CdSe 4-4 4-4   10   2,66   2,63
  InN 4-4 3(2)   10   2,15   2,13

 

Комментарии, высказанные по поводу состоятельности величин удельного вращения в таблицах 7 и 8, относятся и к величинам таблицы 9. Большинство элементов, участвующих в соединениях этой таблицы, имеет те же вращения, что и в предыдущих таблицах, а там, где имеются исключения, отклонения носят обычную и предсказуемую природу.

Характерная черта Таблицы 9 – появление одного из обычно электроположительных элементов Группы 2В, алюминия, в роли элемента Деления III. Бериллий и магний тоже формируют соединения типа ZnS, но в отличие от ранее упомянутых соединений лития, они нерегулярны, возможно, по той же самой причине, и не внесены в таблицу. Поведение Деления III у элементов, обычно относящихся к Делению I, - результат маленького размера более низких групп, которое помещает элементы Деления I в те же положения относительно электроотрицательной нулевой точки, что и элементы больших групп Деления III. Эти отношения приведены в следующей таблице, где звездочки определяют те элементы, которые обычно находятся в Делении I.

 

Деление III

Be* Mg* Zn
B* Al* Ga

 

 

C Si Ge
N P As
O S Se
F Cl Br

 

Ни одна из уже рассмотренных ориентаций не применима к соединениям элементов Деления II. Обычная ориентация не существует выше удельного вращения 5, поскольку более высокая величина помещала бы относительное вращение выше ограничивающей величины 10. Виды соединений окиси цинка и сульфида цинка являются электроотрицательными структурами, и обратная ориентация структур элементов Деления II не применима для соединений с отрицательными элементами. Поэтому, элементы деления II формируют свои соединения на основе магнитной ориентации. Этот вид структуры теоретически доступен для любого элемента, но его использование ограничено соображениями вероятности. Он используется во многих соединениях Делений III и IV, особенно в группах более высокого вращения, но редко появляется в соединениях Деления I, из-за очень высокой вероятности обычной ориентации в этом делении.


Дата добавления: 2018-09-20; просмотров: 275; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!