Аккумулирование электричества 4 страница



Из-за большей вероятности комбинаций электроположительных видов, характеристики Деления II переносятся на первые элементы Деления III, и эти элементы, никель, палладий и лютеций, включены в таблицу. Некоторые подобные модификации обычных границ деления уже отмечались в связи с другими темами.

Общее итоговое вращение материального атома – это вращение с положительным смещением; то есть, со скоростью меньше единицы. Как таковое, такое смещение обычно приводит к изменению положения в пространстве. Однако внутри единицы пространства, все движение является движением во времени. Следовательно, ориентация атома с целью пространственно-временного равновесия существует в трех измерениях времени. Как мы видели в исследовании межрегиональной ситуации в главе 12 тома 1, каждое из измерений индивидуально контактирует с пространством региона вне единицы расстояния. В той степени, в которой движение в измерении времени действует вдоль линии контакта, оно является движением в эквивалентном пространстве. В противном случае, оно не обладает пространственным действием выше границы единицы. Из-за независимости трех измерений движения во времени, относительная ориентация электрического вращения любой комбинации атомов может быть одинаковой со всеми измерениями пространства или могут быть две или три разных ориентации.

У большинства уже обсужденных элементов, ориентация одинакова во всех измерениях пространства, а в исключениях альтернативные вращения симметрично распределяются в твердой структуре. Система сил совокупности таких элементов однородна. Из этого следует, что любая совокупность атомов этих элементов обладает структурой, в которой составляющие организованы в одном из геометрических паттернов, возможных для равных сил: равновеликий кристалл. Все электроположительные элементы (Деления I и II) кристаллизуются в равновеликих формах, и за исключением некоторых, обладающих более сложными структурами, каждая кристаллическая форма этих элементов принадлежит одному или другому их трех типов: объемно-центрированной, кубической гранецентрированной или шестиугольной плотноупакованной структуры.

Сейчас мы переходим к другому главному подразделению элементов, электроотрицательному классу, элементам, чье нормальное электрическое смещение отрицательное. Здесь, система сил не обязательно однородна, поскольку самая вероятная компоновка в одном или двух измерениях может быть отрицательной ориентацией, прямой комбинацией двух отрицательных электрических смещений, аналогичной обще-положительным комбинациям. Нельзя иметь отрицательную ориентацию во всех трех измерениях. И если она существует в одном или двух измерениях, силы вращения атомов обязательно неоднородны. Контролирующий фактор – требование, чтобы общее итоговое смещение вращения материального атома как целого было положительным. Очевидно, что отрицательная ориентация во всех трех измерениях несовместима с этим требованием. Но если отрицательное смещение ограничивается одним измерением, совокупность обладает фиксированными атомными положениями в двух измерениях, с фиксированным средним положением в третьем измерении из-за положительного смещения атома в целом. Это приводит к кристаллической структуре, которая, по сути, эквивалентна одному из фиксированных положений во всех измерениях. Обычно, такие кристаллы не изомерны, поскольку межатомное расстояние в четном измерении обычно отличается от межатомного расстояния двух других. Если случится так, что расстояния во всех измерениях совпадают, в последующем обсуждении мы обнаружим, что симметрия пространства не является указателем на симметрию сил. 

Если отрицательное смещение совсем невелико, как у нижних элементов Деления IV, отрицательную ориентацию в двух измерениях можно иметь, если положительное смещение в третьем измерении превышает сумму двух отрицательных компонентов так, что итоговый результат все еще положительный. Здесь, относительные положения атомов фиксируются лишь в одном измерении, но средние положения в двух других измерениях постоянны по причине итогового, положительного смещения атомов. Совокупность таких атомов сохраняет большинство внешних характеристик кристалла, но при исследовании внутренней структуры, представляется, что атомы распределяются скорее случайно, чем в обычной упорядоченной компоновке кристалла. На самом деле, здесь имеется столько же порядка, сколько и в кристаллической структуре, но часть порядка пребывает скорее во времени, чем в пространстве. Такая форма материи определяется как стекловидная или стеклообразная форма, в отличие от кристаллической формы.

В этой связи, термин “состояние” часто употребляется вместо “формы”, но физическое состояние материи обладает и другим значением, основанном на других критериях. Поэтому, представляется целесообразным свести использование этого термина к одному применению. И стекла, и кристаллы пребывают в твердом состоянии.

Приступая к рассмотрению структур отдельных электроотрицательных элементов, мы будем начинать с Деления III. Общая ситуация в этом делении аналогична ситуации в Делении II, но отрицательность обычного электрического смещения вносит новый фактор в определение паттерна ориентации, поскольку самая вероятная ориентация электроотрицательного элемента может не существовать во всех трех измерениях. Как констатировалось раньше, если в данном наборе обстоятельств возможны две или более разных ориентаций, решающим фактором является относительная вероятность. Низкие смещения более вероятны, чем высокие. Простые ориентации более вероятны, чем комбинации. Положительная электрическая ориентация более вероятна, чем отрицательная. В Делении I, все эти факторы работают в одинаковом направлении. Положительная ориентация проста и обладает наименьшей величиной смещения. Следовательно, все структуры этого деления формируются на основе положительной ориентации. В Делении II, поле вероятности уже. Здесь, положительное смещение x больше, чем обратное смещение 8-x, и это работает против большей неотъемлемой вероятности простой положительной структуры. В результате, в этом делении обнаруживаются и положительные и отрицательные виды структур, наряду с комбинацией обоих.

В Делении III, отрицательная ориентация обладает статусом, похожим на статус положительной ориентации в делении II. Как простая ориентация, она обладает относительно большей вероятностью. Но она ограничена одним измерением. Следовательно, структуры Групп 3А и 3В Деления III неоднородны, с обратной ориентацией в двух других измерениях. Возможно сочетание двух видов ориентации. У меди и серебра, первых элементов соответствующих групп Деления III, кристаллы формируются на основе комбинированной ориентации, обладающей кубической симметрией. Как и в Делении II, элементы Групп 4А и 4В Деления III, кристаллизуются полностью на основе обратной ориентации. Таблица 4 приводит то, что может рассматриваться как правильные межатомные расстояния элементов Деления III.

 

Таблица 4: Расстояния - Деление III

 

Группа

Атомный
номер

Элемент

Удельное вращение

Расстояние

Магнитное

Электрическое

Выч.

Набл .

 

3A

  29 Медь   4-3   8-10   2,53   2,55

 

30

Цинк

  4-4   7   2,90   2,91
  4-4   10   2,66   2,66

 

31

Галлий

  4-3   6   2,79   2,80
  4-3   10   2,46   2,44

 

3B

  47 Серебро   4-5   8-10   2,87   2,88

 

48

Кадмий

  5-4   7   3,20   3,26*
  5-4   10   2,94   2,97

 

49

Индий

  5-4   6   3,33   3,37
  5-4   6-10   3,21   3,24

 

4A

  72 Гафний   4-4½   5   3,26   3,32
  73 Тантал   4½-4½   10   2,87   2,86
  74 Вольфрам   4-4½   10   2,73   2,74
  75 Рений   4-4½   10   2,73   2,77*
  76 Осмий   4-4½   10   2,73   2,73
  77 Иридий   4-4½   10   2,73   2,71
  78 Платина   4-4½   10   2,73   2,77
  79 Золото   4½-4½   10   2,87   2,88

 

80

Меркурий

  4-4½   5-10   2,98   3,00
  4½-4½   5   3,43   3,47
  81 Таллий   4½-4½   5   3,43   3,45

 

Хотя в Делении IV вероятность отрицательной ориентации больше, чем в Делении III, за счет меньших величин смещения, этот вид структуры редко появляется в кристаллах низкого деления. Причина в следующем: Если у элементов с низким смещением существует такая ориентация, она существует в двух измерениях, и создает скорее стекловидную или стеклообразную совокупность, чем кристалл. Обратная ориентация не подвергается никакому ограничивающему фактору такой природы, но она менее вероятна при низких смещениях. За исключением группы 4А, где она продолжает доминировать, такая ориентация менее часта по мере уменьшения смещения. Там же, где она существует, она все больше и больше комбинируется с другим видом ориентации. В результате этих ограничений, применимых к более вероятным видам ориентации, многие структуры деления IV формируются на основе вторичной, положительной ориентации, комбинации двух смещений 8 - x.

В электроположительных делениях, вторичная, положительная ориентация не возможна, поскольку в этих делениях 8 - x отрицательная, и подобно самой отрицательной ориентации, отрицательная комбинация 8 - x должна принимать подчиненную роль в одном или двух измерениях асимметричной структуры. Такая кристаллическая структура не может соперничать с высокой вероятностью симметричных электроположительных кристаллов и, следовательно, не существует. Однако в электроотрицательных делениях, смещение 8 – x положительное, и здесь нет ограничений, кроме тех, которые возникают за счет высоких величин смещения.

Действующее смещение вторичной, положительной ориентации даже больше, чем можно было бы ожидать от величины количества 8 – x, поскольку изменение нулевых точек для двух противоположно направленных движений тоже направлено противоположно, и новые нулевые точки находятся на расстоянии 16–ти единиц смещения друг от друга. Итоговое результирующее смещение равно 16 – 2x, и соответствующее удельное вращение 18 – 2x. В Делении IV, числовые величины последнего выражения лежат в области от 10 до 16. За счет низкой вероятности таких высоких вращений, вторичная, положительная ориентация ограничена одним или половиной измерения, несмотря на ее положительный характер. В Делении III, смещения 8 – x ниже, но в этом случае они слишком низкие. Двух единичное разделение нулевых точек (16 единиц смещения) не может поддерживаться до тех пор, пока действующее смещение не станет равно, по крайней мере, 8-ми (одной полной трехмерной единице). Поэтому, вторичная, положительная ориентация ограничена делением IV.

Особый вид структуры возможен лишь у тех элементов, которые обладают смещением вращения в четыре единицы в электрическом измерении. Эти элементы находятся на границе между Делениями III и IV, где одинаково вероятны вторичные, положительные и обратные ориентации. При таких условиях, другие элементы кристаллизуются в шестиугольные или четырехугольные структуры, использующие разные ориентации в разных измерениях. Однако у 4-х элементов с такими смещениями, две ориентации создают одинаковое удельное вращение: 10. Следовательно, межатомное расстояние в этих кристаллах одинаково во всех измерениях, и кристаллы однородны, хотя силы вращения в разных измерениях не носят одинакового характера. Молекулярная компоновка в этом кристаллическом паттерне, ромбовидная структура, демонстрирует истинную природу сил вращения. Внешне этот кристалл нельзя отличить от однородных кубических кристаллов, но аналогичная объемноцентрированная структура имеет атом в каждом углу куба и один в центре куба, в то время как ромбовидная структура оставляет противолежащие углы открытыми для приспособления к необычной проекции сил во вторичном, положительном измерении.

У низких элементов Деления IV, пребывающиих выше области обратного вида ориентации, нет доступной альтернативы для комбинации с вторичной, положительной ориентацией. Поэтому, кристаллы этих элементов не обладают действующим электрическим вращением в оставшихся измерениях. Относительное удельное вращение в этих измерениях равно единице, как и у всех элементов инертного газа. Наиболее общие расстояния у совокупностей элементов Деления IV показаны в Таблице 5.

Таблица 5: Расстояния - Деление IV

 

Группа

Атомный
номер

Элемент

Удельное вращение

Расстояние

Магнитное

Электрическое

Выч.

Набл .

 

2B

  14 Кремний   3-3   5-10   2,31   2,35

 

15

Фосфор

  3-3

 

10

 

2,19

 

2,2

  3-4
  3-4   1   3,46   3,48*

 

16

Сера

  3-3   10   2,11   2,07
  3-3   1   3,21   3,27*

 

17

Хлор

  3-3   16   1,92   1,82
  3-3   1-16   2,48   2,52

 

3A

  32 Германий   4-3   10   2,46   2,43

 

33

Мышьяк

  4-3   12   2,37   2,44*
  4-3   10   2,46   2,51

 

34

Селен

  4-3   14   2,32   2,32
  3-4   1   3,46   3,46

 

35

Бром

  4-3   16   2,25   2,27
  3-4   1   3,46   3,30

 

3B

 

50

Олово

  4½-4   10   2,80   2,80
  5-4   5-10   3,22   3,17
  5-4   10   2,94   3,02

 

51

Сурьма

  5-4   12   2,83   2,87
  5-4   4-10   3,34   3,36*

 

52

Теллур

  5-4½   14   2,82   2,86
  5-4½   1-10   3,71   3,74

 

53

Йод

  5-4   16   2,68   2,70
  5-4   1-16   3,54   3,54
  5-4   1   4,46   4,41*

 

4A

  82 Свинец   4½-4½   5   3,43   3,49

 

83

Висмут

  4½-4½   5   3,43   3,47*
  4½-4½   5-10   3,14   3,10
  84 Полоний   4½-4½   5   3,43   3,40*

 


Дата добавления: 2018-09-20; просмотров: 256; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!