Аккумулирование электричества 5 страница



Вплоть до этого момента, не уделялось никакого внимания элементам с атомным номером ниже 10, поскольку силы вращения этих элементов подвергаются определенным конкретным влияниям, что делает желательным их отдельное обсуждение. Одна причина отклонения от нормального поведения – маленький размер вращающихся групп. В больших группах различаются четыре измерения, и за исключением некоторых перекрываний, каждое измерение обладает своими характерными комбинациями сил, что мы видели в предыдущих параграфах. Однако в группе из 8-ми элементов, вторые серии четырех элементов, которые обычно составляли бы деление III, на самом деле находятся в положении Деления IV. В результате, до некоторой степени, эти четыре элемента обладают свойствами обоих делений. Аналогично, элементы этих групп Деления I могут работать, как будто бы они являются членами Деления III. Вторичное влияние, действующее на силы и кристаллические структуры элементов низких групп, - бездействие сил вращения в конкретных измерениях, упомянутых раньше.

 Удельное вращение двух единиц не действует в положительном направлении. Причина этого раскрывается в уравнении 1 – 1. Применяя это уравнение, мы находим, что действующая сила вращения (ln t) для t = 2 составляет 0,693, что меньше, чем противоположная пространственно-временная сила, равная 1. Следовательно, итоговая действующая сила удельного вращения, равная 2, ниже минимальной величины для действия в положительном направлении. Чтобы создавать действующую силу, удельное вращение должно быть достаточно высоким, чтобы сделать ln t больше единицы. Это достигается во вращении 3.

Удельное магнитное вращение группы 1В, включающее лишь два элемента, водород и гелий, и 8 элементов группы 2А, начиная с лития, сочетает величины 3 и 2. Если величина 2 применяется к вспомогательному вращению (3-2), одно измерение не активно; если она применяется к основному вращению (2-3), не активны два измерения. Это уменьшает силу, оказываемую каждым атомом, до 2/3 нормальной величины в случае одного неактивного измерения и до 1/3 для двух не активных измерений. Межатомное расстояние пропорционально квадратному корню произведения двух вовлеченных сил. Следовательно, уменьшение в расстоянии тоже равно 1/3 на каждое не активное измерение.

Поскольку электрическое вращение не является базовым движением, а обратным вращением магнитно-вращающейся системы, ограничения, которым подвергается базовое вращение, не работают. Электрическое вращение просто изменяет магнитное вращение, и низкая величина силы, свойственная удельному вращению 2, проявляется как межатомное расстояние, большее чем то, которое превалировало бы, если бы электрического смещения вообще не было (единицы удельного вращения).

Теоретические величины межатомных расстояний элементов низких групп сравниваются с измеренными величинами в Таблице 6.

Цифры в скобках в колонке 4 этой таблицы указывают на действующее число измерений. Таким образом, обозначение 3(1), показанное для водорода, означает, что этот элемент обладает удельным магнитным вращением 3, действующим лишь в одном измерении.

За исключением того, когда кристаллы равновелики, в связи с измерениями расстояния элементов нижних групп имеется много неопределенности. Зафиксированные многие другие дополнительные величины тоже включены в таблицу. Эта ситуация будет подробнее обсуждаться в главе 3, где мы воспользуемся измерениями расстояний между похожими атомами, которые являются составляющими химических соединений.

 

Таблица 6: Расстояния – Элементы нижней группы

 

Группа

Атомный
номер

Элемент

Удельное вращение

Расстояние

Магнитное

Электрическое

Выч.

Набл .

 

1B

  1 Водород   3(1)   10   0,70   0,74*
  2 Гелий   3(1)   1   1,07   1,09

 

*2A

  3 Литий   2½-2½   2   3,05   3,03
  4 Бериллий   3(2)     2,282   2,28

 

5

Бор

  3(2)   5   1,68   1,74*
  3-3   10   2,11   2,03*

 

6

Углерод (алмаз)   3(2)   5-10   1,54   1,54

Углерод (графит)

  3(2)   1   1,41   1,42
  3-3   1   3,21   3,40

 

7

Азот

  3(1½)   10   1,06   1,06
  3-3   1   3,21   3,44*

 

8

Кислород

  3(1½)   10   1,06   1,15*
  3-3   1   3,21   3,20*

 

9

Фтор

 

3(2)

           
  10   1,41   1,44*

 

Как указывалось во вводных параграфах этой главы, мы еще не в том положении, когда можем определять, каким будет межатомное расстояние для любого данного элемента при данном наборе условий. Обсужденные теоретические соображения во многих случаях реально дают конкретные величины, но в других примерах имеется неопределенность, поскольку наблюдаемой структуре соответствуют две или больше теоретически возможных компоновок смещения. И в теоретической, и в экспериментальной области происходит непрерывный прогресс, и можно ожидать, что неопределенности постепенно сведутся к минимуму, упомянутому раньше. В ходе процесса, обязательно произойдут изменения в отождествлениях наблюдаемых расстояний с теоретически возможными структурами. Сравнение таблиц 1-6 с соответствующими таблицами первого издания было бы интересно как указание на природу и величину изменений, которые произошли в нашей точке зрения на ситуацию с межатомным расстоянием за последние двадцать лет, и, посредством расширения, как указание на объем изменения, которое можно ожидать в будущем.

Такое сравнение показывает, что модификации начальных выводов, которые требуются сейчас, в свете доступной дополнительной информации, почти полностью совпадают с теми, которые возникли в результате лучшего теоретического понимания поведения удельных магнитных вращений выше действующей величины 4. Несколько изменений требуется либо в магнитных, либо в электрических величинах в тех комбинациях вращения, в которых удельное магнитное вращение равно 4-4 или меньше.

Одной из сбивающих с толку ситуаций вращения, как это представлялось во время первой публикации, была кажущаяся обратной последовательность удельного магнитного вращения в Группах 4А и 4В. В то время считалось, что величины 4½ и 5 удельного вращения соответствуют одинаковому смещению 4, с той лишь разницей, что в случае величины 4½ вращение распространяется на две единицы вибрации, а последнее приращение удельного вращения в этом случае равно только половине размера. Следующее приращение на половину единицы, если бы оно было возможно, привело бы вращение 4½ назад, к величине 5. Таким образом, представлялось, что последовательность удельных вращений выше 4½-4 была бы 4½-4½, 5-4½, 5-5, и так далее. Но тенденция идет в противоположном направлении. По мере увеличения атомного номера, вместо движения к более высоким величинам происходит движение к меньшим величинам. Это было очевидно уже во время публикации первого издания, поскольку меньшие межатомные расстояния ряда элементов от вольфрама до платины не могли приниматься в расчет до тех пор, пока магнитное удельное вращение не падало назад к 4-4½ с более высоких уровней предшествующих элементов Группы 4А. Тенденция уменьшения оказалась еще важнее, когда стали доступны расстояния для дополнительных элементов Группы 4В, поскольку некоторые из величин указывали на удельные магнитные вращения 4–4 или даже 4-3½.

Случилось так, что продолжение тенденции к низким величинам в более поздних данных повлияло на прояснение ситуации. Сейчас очевидно, что в доступной части Групп 4А и 4В удельное вращение 5–5 не достигается. (Рассмотрения, которые будут обсуждаться позже, показывают, что удельное вращение 5-5 было бы нестабильным.) Низкие величины в Группах 4А и 4В возникают не в результате уменьшения магнитного смещения, а за счет сдвига существующих единиц смещения с вибрации один к вибрации два, процесс, который наполовину уменьшает удельное вращение единиц. На основе вибрации один, смещения вращения 4-3 соответствует удельным вращениям 5-4. Переход последующих единиц смещения к вибрации два, без изменения числа единиц смещения, выливается в ряды удельных вращений 5-4, 4½-4, 4-4½, 4-4, и так далее. Подобные серии с одной дополнительной единицей смещения проходят через величины 5-4½, 4½-5, 4½-4½, 4½-4, и так далее, а затем следуют тому же пути, что и серии с более низким смещением.

Модификации, сделанные в теоретических величинах вращения, относятся к элементам двух групп с самым высоким вращением, поскольку публикация первого издания является результатом рассмотрения ситуации в свете нового понимания тенденции удельного вращения. Общий паттерн в Группе 4А сейчас видится как серии от 5-4½ до 4-4½, с возвращением к 4½-4½ у низких электроотрицательных элементов. Насколько определено сейчас, Группа 4В следует тому же паттерну, но продвинутому на один шаг, то есть она начинается с 4½-5, а не с 5-4½.

Разница в межатомном расстоянии, соответствующая одному из шагов в процессе перехода, относительно мала. И в свете значительной вариации в экспериментальных величинах представлялось целесообразным принять во внимание вероятность комбинаций, таких как удельное вращение 4½-5 одного из пары атомов и 4½-4½ другого. Ясно, что такие комбинации существуют у некоторых элементов низких групп, например, у натрия, и, возможно, играют определенную роль в более высоких группах. Например, большинство зафиксированных расстояний у гольмия и эрбия лучше согласуются с комбинацией 5-4½ и 4½-5, чем с какой-либо из них по отдельности. Однако теоретически возможны все приведенные величины, и единственная проблема в этом и в других подобных случаях, какая теоретическая величина соответствует наблюдаемому расстоянию. Ответам на этот вопрос придется подождать оценки теоретических вероятностей или разрешения экспериментальных неясностей.

Многим вопросам, касающимся структур альтернативных кристаллов, тоже придется подождать большей информации из теории или эксперимента, особенно если рассматриваются кристаллические формы, существующие лишь при высоких температурах или давлениях. Однако в этой области уже имеется большой объем информации. Ее можно связать с теоретической картиной, как только у кого-то появится время и желание выполнить эту задачу.

Глава 3

Расстояния в соединениях

До сих пор, в обсуждении межатомных расстояний, мы имели дело с совокупностями, состоящими из одинаковых атомов. Те же общие принципы применяются и к совокупностям разных атомов, но существование различий между компонентами таких систем вносит новые факторы, которые нам захочется исследовать.

Вопросы, рассматриваемые в этой главе, не имеют отношения к комбинациям электроположительных элементов (совокупностям, являющимся скорее смесями или сплавами, чем химическими соединениями). Как отмечалось в главе 18 тома 1, пропорции, в которых такие элементы могут комбинироваться, определяются или ограничиваются геометрическими соображениями, но, если исключить такие влияния, разные атомы могут комбинироваться на той же основе, что и одинаковые. Здесь, по характеру и действию, силы идентичны виду комбинации, которую мы назвали положительной ориентацией. Согласно уже установленным принципам, результирующее электрическое вращение равно (t1t2)1/2, геометрическому среднему двух составляющих. Если два элемента обладают разными магнитными вращениями, результирующее тоже будет геометрическим средним индивидуальных вращений, поскольку магнитные вращения всегда обладают положительными смещениями и комбинируются так же, как положительные электрические смещения. Следовательно, выведенные действующие электрические и магнитные удельные смещения можно ввести в надлежащие уравнения силы и расстояния из главы 1.

Комбинации разных положительных атомов могут иметь место и на основе обратной ориентации, альтернативной структуры, доступной совокупности элементов. Если электрические вращения компонентов разные, результирующее удельное вращение двухатомной комбинации не будет требуемым нейтральным 5 или 10, а вторая пара атомов, ориентированная противоположно первой, создаст четырехатомную структуру, обладающую необходимым равновесием вращения. Как указывалось в томе 1, самый простой вид комбинации в химических соединениях базируется на нормальной ориентации, в которой электроположительные элементы Деления I соединяются с электроотрицательными элементами Деления IV на основе численно равных смещений. Результирующее действующее удельное магнитное вращение можно вычислить так же, как и для всех положительных структур. Но, как мы видели в обсуждении межатомных расстояний элементов, когда между положительными и отрицательными электрическими вращениями устанавливается равновесие, результирующее является суммой двух отдельных величин, а не средним.

 

Таблица 7: Расстояния – Соединения вида NaCl

Соединение

Удельное вращение

Расстояние

Магнитное

Электрическое

Выч .

Набл .

  LiH   3(2)   3(2)   3   2,04   2,04
  LiF   3(2)   3(2)   3   2,04   2,01
  LiCl   3(2)   3½-3½   4   2,57   2,57
  LiBr   3(2)   4-4   4   2,77   2,75
  Li   3(2)   5-4   4   2,96   3,00
  NaF   3-2½   3(2)   4   2,26   2,31
  NaCl   3-2½   3½-3½   4   2,77   2,81
  NaBr   3-2½   4-4   4   2,94   2,98
  NaI   3-3   5-4   4   3,21   3,23
  MgO   3-3   3(2)     2,15   2,10
  MgS   3-3   3½-3½     2,60   2,59
  MgSe   3-3   4-4     2,76   2,72
  KF   4-3   3(2)   4   2,63   2,67
  KCl   4-3   3½-3½   4   3,11   3,14
  KBr   4-3   4-4   4   3,30   3,29
  KI   4-3   5-4   4   3,47   3,52
  CaO   4-3   3(2)     2,38   2,40
  CaS   4-3   3½-3½     2,81   2,84
  CaSe   4-3   4-4     2,98   2,95
  CaTe   4-3   5-4     3,13   3,17
  ScN   4-3   3(2)   7   2,22   2,22
  TiC   4-3   3(2)     2,12   2,16
  RbF   4-4   3(2)   4   2,77   2,82
  RbCl   4-4   3½-3½   4   3,24   3,27
  RbBr   4-4   4-4   4   3,43   3,43
  RbI   4-4   5-4   4   3,61   3,66
  SrO   4-4   3(2)     2,51   2,57
  SrS   4-4   3½-3½     2,92   2,93
  SrSe   4-4   4-4     3,10   3,11
  SrTe   4-4   5-4     3,26   3,24
  CsF   5-4   3(2)   4   2,96   3,00
  CsCl   5-4   4-3   4   3,47   3,51
  BaO   5-4½   3(2)     2,72   2,76
  BaS   5-4½   4-3     3,17   3,17
  BaSe   5-4½   4-4     3,30   3,31
  BaTe   5-4½   5-4     3,47   3,49
  LaN   5-4   3(2)   6   2,61   2,63
  LaP   5-4   4-3     2,99   3,01
  LaAs   5-4   4-4   7   3,04   3,06
  LaSb   5-4   5-4   7   3,20   3,24
  LaBi   5-4   5-4½   7   3,24   3,28

 


Дата добавления: 2018-09-20; просмотров: 292; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!