ГЛАВА 4. СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА 3 страница



Рисунок 273. Разрез селезенки.

В каждом органе характер ветвления сосудов, их архитектоника, имеют свои особенности. Вне- и внутрибрюшные сосуды, соединяясь между собой, образуют соустья, или анастомозы; ветви, соединяющие между собой сосуды, носят название анастомотических сосудов, vasa anastomotica. В ряде мест анастомозы между сосудами настолько многочисленны, что образуют артериальную или венозную сосудистую сеть, rete arteriosum и rete venosum. или сосудистое сплетение, plexus vasculosus. Располагаясь параллельно сосудистому стволу, анастомозы соединяют его участки, более или менее удаленные один от другого, а также сосуды в органах и тканях. Сосуды, принимающие участие в образовании коллатерального кровообращения — коллатеральные сосуды, vasa collateralia, могут восстанавливать кровообращение в той или иной части тела при затруднении движения крови по основному стволу. Кроме анастомозов, соединяющих артерии с артериями и вены с венами, встречаются соединения между артериями и венами, артериовенозные анастомозы, anastomoses arleriovenosae, по которым кровь из артерий непосредственно переходит в вены (пальцы руки, капсула почки). Артериовенозные анастомозы образуют так называемый аппарат сокращенного кровообращения — дериватный
аппарат, apparatus derivatorius. В ряде мест артериальной и венозной системы имеется чудесная сеть, rete mirahile. Она представляет собой сеть капилляров, в которых приносящие и выносящие сосуды однотипны, как, например, в сосудистом клубочке почки, glomerulus renalis, где приносящий артериальный сосуд разделяется на капилляры, которые снова собираются в артериальный сосуд.

Артериальное кровоснабжение полых органов происходит по трем типам — радиальному, циркулярному, и продольному. При этом артериальные сосуды формируют арки вдоль полого органа (желудок, кишечник, трахея др.) и посылают свои ветви на его стенки. На стенке образуются артериальные сети.

Для артериальной системы, как части сердечно-сосудистой системы характерно наличие во всех органах и частях тела соединений между артериями и их ветвями — анастомозов, благодаря которым осуществляется окольное (коллатериальное) кровообращение.

Кроме анастомозов, между мелкими артериями или артериолами и венами есть непосредственные соединения — соустья. По этим соустьям кровь, минуя капилляры, из артерии непосредственно переходит в вену. Анастомозы и соустья играют большую роль в перераспределении крови между органами.

О состоянии функции системы кровообращения можно судить на основании следующих ее основных показателей.

Артериальное давление (АД) — давление, развиваемое кровью в артериальных сосудах. При измерении давления пользуются единицей давления, равной 1 мм ртутного столба.

Артериальное давление — показатель, состоящий из двух величин — показателя давления в артериальной системе во время систолы сердца (систолическое давление), соответствующего самому высокому уровню давления в артериальной системе, и показателя давления в артериальной системе во время диастолы сердца (диастолическое давление), соответствующего минимальному давлению крови в артериальной системе. У здоровых людей 17-60 лет систолическое артериальное давление бывает в пределах 100-140 мм рт. ст., диастолическое давление — 70-90 мм рт. ст.

Эмоциональный стресс, физические нагрузки вызывают временное повышение АД. У здоровых людей суточное колебание АД может составлять 10 мм рт. ст. Повышение АД назы - вают гипертензией, а понижение — гипотензией.

Минутный объем крови — количество крови, выбрасываемой сердцем крови за одну минуту. В покое минутный объем (МО) составляет 5,0-5,5 л. При физической нагрузке он увеличивается в 2-4 раза, у спортсменов — в 6-7 раз. При некоторых сердечных заболеваниях МО уменьшается до 2,5-1,5 л.

Объем циркулирующей крови (ОЦК) в норме составляет 75-80 мл крови на 1 кг веса человека. При физических нагрузках ОЦК увеличивается, а при кровопотере и шоке — уменьшается.

Время кругооборота крови — время, в течение которого частичка крови проходит большой и малый круги кровообращения. В норме это время 20-25 секунд, оно уменьшается при физических нагрузках и увеличивается при нарушениях кровообращения до 1 минуты. Время кругооборота по малому кругу составляет 7-11 секунд.

Распределение крови в организме характеризуется резко выраженной неравномерностью. У человека кровоток в мл на 100 г веса органа составляет в покое за 1 минуту (в среднем): в почках — 420 мл, в сердце — 84 мл, в печени — 57 мл, в поперечно-полосатых мышцах — 2,7 мл. Вены вмещают 70-80% всей крови организма. При физической нагрузке сосуды скелетной мускулатуры расширяются; кровоснабжение мышц при физической нагрузке будет составлять 80-85% от общего кровоснабжения. На остальные органы будет оставаться 15-20% объема всей крови.

Строение сосудов сердца, головного мозга и легких обеспечивает относительно привилегированное кровоснабжение этих органов. Так, к мышце сердца, масса которого составляет 0,4% массы тела, в покое поступает ее около 5%, т. е. в 10 раз больше, чем в среднем ко всем тканям. К головному мозгу, масса которого составляет 2% массы тела, в покое поступает почти 15% всей крови. Мозг потребляет 20% кислорода, поступающего в организм.

В легких кровообращение облегчается за счет большого диаметра легочных артерий, высокой растяжимости сосудов легких и небольшой протяженности пути, по которому проходит кровь в малом круге кровообращения.

Регуляция кровообращения обеспечивает величину кровотока в тканях и органах, соответствующую уровню их функций. В головном мозгу имеется сердечно-сосудистый центр, который регулирует деятельность сердца и тонус мышечной оболочки кровеносных сосудов.

К сердечно-сосудистому центру поступают нервные импульсы от нервных окончаний (рецепторов), расположенных в кровеносных сосудах и реагирующих на изменение давления в сосудах, изменение скорости кровотока, химический состав крови и т. д.

Кроме того, на сердечно-сосудистый центр непосредственно влияют: концентрация кислоро­да, двуокиси углерода и ионов водорода в тканях мозга и состояние коры головного мозга (возбуждение, торможение коры). Под влиянием вышеперечисленных факторов из сердечно­сосудистого центра к сердцу и кровеносным сосудам по нервным волокнам идут соответствующие импульсы, влияющие на работу сердца и состояние мускулатуры кровеносных сосудов.

Регуляция кровообращения зависит также от температуры тканей и органов тела и концентрации в крови гормона коры надпочечников — адреналина, который вызывает сужение сосудов, усиление работы сердца.

В ряде случаев, регуляция кровообращения происходит без участия нервной системы — по принципу саморегуляции. Механизмы саморегуляции заложены в самой системе кровообращения и ее взаимоотношения с органами. Благодаря саморегуляции уменьшается просвет артериол при повышении АД, а при увеличении притока крови к сердцу происходит усиление работы сердца.

Механизмы регуляции кровообращения сложны и многогранны. Благодаря им происходит адаптация сердечно-сосудистой системы к изменениям различных факторов как в организме, так и в окружающей среде.

Из плазмы крови образуются телесные жидкости: жидкость стекловидного тела, жидкость передней камеры глаза, перилимфа, цереброспинальная жидкость, целомическая жидкость, тканевая жидкость, кровь, лимфа.

У взрослого мужчины содержится от 5 до 6 литров крови, а у женщины — от 4 до 5. Каждый день это количество крови проходит через сердце более 1000 раз.

Поскольку жидкости занимают промежуточное положение между внешней средой и клетками, они играют роль амортизатора при резких внешних изменениях и обеспечивают выживание клеток; кроме того, они являются средством транспортировки питательных веществ и продуктов распада. Кровь — это внутренняя среда, присущая человеку и позвоночным. Она на 50% состоит из воды и содержит много веществ и клеток (рис. 258, 261):

1) Плазма крови. Это жидкий компонент крови, в котором содержатся клетки крови и растворены кислород, углекислый газ, минеральные соли, глюкоза и белки.

2) Эритроциты, или красные кровяные тельца. Содержат гемоглобин - дыхательный пигмент красного цвета.

3) Лейкоциты, или белые кровяные тельца. Выполняют защитные функции.

4) Тромбоциты, или кровяные пластинки. Необходимы для свертывания крови.

Функции крови. 1) Питательная функция. Кровь переносит кислород (О2) и различные питательные вещества, отдает их клеткам тканей и забирает углекислый газ (С02) и прочие продукты распада для их выведения из организма.

2) Транспортная функция. Кровь переносит гормоны, вырабатываемые эндокринными железами, к соответствующим органам, передавая таким образом «молекулярную информацию» из одних зон в другие.

3) Способность останавливать кровотечение. Когда происходит сосудистое кровотечение, кровь посылает туда многочисленные лейкоциты, заставляет выходить плазму из сосудов или сосредоточивает кровяные пластинки — тромбоциты — в местах потери крови.

4) Терморегуляторная функция. Кровь подобна обогревательной системе, так как распределяет тепло по всему организму.

5) Функция регулятора рН. Кровь препятствует изменению кислотности внутренней среды (7,35-7,45) с помощью таких веществ, как белки и минеральные соли.

6) Защитная функция. Кровь транспортирует лейкоциты и антитела, защищающие организм от патогенных микроорганизмов.

Плазма крови — это жидкий компонент крови, то есть раствор, состоящий на 90-92% из воды и содержащий форменные элементы — кровяные тельца и пластинки. Кроме того, в плазме содержится целый ряд растворенных веществ, которые можно объединить в три группы:

1) Белки. Это альбумины, глобулины и фибриноген. Фибриноген участвует в образовании сгустков крови, а часть плазмы без фибриногена составляет сыворотку крови.

Рисунок 274.                                        2) Неорганические соли. Находятся растворенными в

виде анионов (ионы хлора, бикарбонат, фосфат, сульфат) и катионов (натрий, калий, кальций и магний). Действуют как щелочной резерв, поддерживающий постоянство рН, и регулирует содержание воды.

3) Транспортные вещества. Это вещества — производные от пищеварения (глюкоза, аминокислоты) или дыхания (азот, кислород), продукты обмена (двуокись углерода, мочевина, мочевая кислота) или же вещества, всасываемые кожей, слизистой оболочкой, легкими и т.д.

Красные кровяные тельца, называемые эритроцитами, представляют собой клетки крови, имеющие форму двояковогнутых дисков диаметром от 6 до 9 мкм, а толщиной 1 мкм с увеличением к краям до 2,2 мкм. В 1 мм крови человека содержится 4,5-5 миллионов эритроцитов. Они составляют 45% объема крови.

Эритроциты образуются в костном мозге путем эритропоэза. Образование идет непрерывно, потому что каждую секунду макрофаги селезенки уничтожают около двух миллионов отживших эритроцитов, которые нужно заменить.

Можно считать, что эритроциты являются «неживыми» клетками, так как у них нет ни ядра, ни митохондрий, но это не мешает им выполнять свои функции: транспортировать кислород.

Эритроциты содержат гемоглобин — белок, образованный четырьмя цепями аминокислот. Каждая цепь присоединяется к молекулярной группе, группе гема, которая имеет один атом железа, фиксирующий молекулу кислорода и переносящий ее от легких к тканям

Кровяные пластинки, или тромбоциты, являются не настоящими клетками, а кусочками цитоплазмы размером от 2 до 5 мкм, образовавшимися в результате дробления больших клеток костного мозга.

Тромбоциты участвуют в процессе свертывания крови, так как у них есть различные белки, способствующие ее коагуля- Рисунок 275. Гемоглобин. ции. Когда лопается кровеносный сосуд, тромбоциты при­крепляются к стенкам сосуда и частично закрывают брешь, выделяя так называемый тромбоцитарный фактор III, который начинает процесс свертывания крови путем превращения фибриногена в фибрин.

Также они выделяют серотонин — вещество, вызывающее сужение кровеносных сосудов для уменьшения кровотока.

В отличие от эритроцитов белые кровяные тельца, или лейкоциты, обладают полной ядерной структурой. Их ядро может быть округлым, в виде почки или многодольчатым. Их размер — от 6 до 20 мкм, а количество в 1 мм3 крови колеблется от 5 до 10 тысяч.

Лейкоциты образуются в разных органах тела: в костном мозге, селезенке, тимусе, подмышечных лимфатических узлах, миндали- ах и пластинках Пэйе, в слизистой оболочке желудка.

Их основная функция — защита организма от инфекций путем поглощения и уничтожения бактерий (фагоцитоз) или при помощи иммунных процессов.

Лейкоциты делятся на две большие группы: гранулоциты и агранулоциты в зависимости от того, наблюдается или нет зернистость в их цитоплазме.

Каждую секунду погибает примерно 10 миллионов эритроцитов, каждый из которых совершил около 172 ООО полных оборотов в системе кровообращения.

Кровь снабжается клетками в основном при помощи красного костного мозга (тельца миелоидного происхождения). Поэтому у Рисунок 276. Органы, детей практически весь костный мозг — красный, в то время в которых образуются как у взрослого человека его процент составляет только половину, лейкоциты.                       и только в определенных костях производится кровь. Также име­

ются тельца лимфоцидного происхождения (лимфоциты и макрофаги), вырабатываемые в лимфатических узлах.

Клетки нашего организма омываются рядом плазма телесных жидкостей, или гуморов, которые составляют так называемую внутреннюю среду. Эти лейкоцит жидкости происходят из плазмы крови и образуются тромбоциты путем фильтрации плазмы через капиллярные сосуды эритроцит системы кровообращения.

(виц сгъереди}

эритроцитРисунок 277. Кровь человека.

Таблица 10. Форменные элементы крови

Форменные элементы Строение клетки Место образования Продолжи­тельность функциони­рования Место отмирания Содержание в 1 мм3 крови Функции
Эритроциты Красные безъядерные клетки крови двояковогнутой формы, содержащие белок- гемоглобин Красный костный мозг 3-4 мес Селезенка. Гемоглобин разрушается в печени 4,5-5 млн. Перенос О2 из легких в ткани и CO2 из тканей в легкие
Лейкоциты Белые кровяные амебообразные клетки, имеющие ядро Красный костный мозг, селезенка, лимфатические узлы 3-5 дней Печень, селезенка, а также места, где идет воспалительный процесс 6-8 тыс. Защита организма от болезнетворных микробов путем фагоцитоза.

 

Продолжение таблицы 10

Форменные элементы Строение клетки Место образования Продолжи­тельность функциони­рования Место отмирания Содержание в 1 мм3 крови Функции
            Вырабатывают антитела, создавая иммунитет
Тромбоциты Кровяные безъядерные тельца Красный костный мозг 5-7 дней Селезенка 300-400 тыс. Участвуют в свертывании крови при повреждении кровеносного сосуда, способствуя преобразованию белка фибриногена в фибрин - волокнистый кровяной сгусток

 

Лимфатическая система (рис. 278-280) — это система лимфатических капилляров, лимфатических сосудов и находящихся по их ходу лимфатических узлов. Лимфатическая система являясь, частью сердечно-сосудистой системы, обеспечивает совместно с венозной системой отток из органов и тканей воды, коллоидных растворов белков, эмульсий жиров, удаление из тканей продуктов жизнедеятельности клеток и микробных телец, выполняет защитную функцию организма. В лимфатических сосудах находится бесцветная жидкость — лимфа, близкая по составу к плазме крови. Лимфатическая система наряду с венозной выполняет дренажную функцию тканей путем образования лимфы. Кроме того, лимфатическая система выполняет специфическую функцию — играет роль барьера для микробов и других вредных частиц, в т. ч. и опухолевых клеток, которые задерживаются в лимфатических узлах.

Лимфатическая система играет большую роль в иммунной функции — в лимфатических узлах образуются защитные клетки (плазматические клетки), которые вырабатывают антитела к болезнетворным частицам (микробы). В лимфатических узлах также находятся В- и Т- лимфоциты, ответственные за иммунитет. В-лимфоциты образуются в красном костном мозге, а в лимфатических узлах происходит их окончательное созревание. В-лимфоциты, созревшие в лимфатических узлах, попадают в кровоток. При необходимости В-лимфоциты вырабатывают антитела — специфические белки, способные связываться с чужеродными для организма веществами и обезвреживать их.

Дренажная функция лимфатической системы осуществляется посредством всасывания из тканей организма воды и растворенных в ней белков, продуктов распада клеток, бактерий и т.д. Объем образующейся лимфы зависит от количества воды, находящейся в межклеточных промежутках тканей организма, и от количества растворенных в этой воде химических веществ и белка.

Если белки и углеводы из кишечника всасываются в кровь, то большинство жиров всасывается в лимфатические сосуды, а затем вместе с током лимфы поступают в кровоток. Крупные белки не могут проникнуть из межклеточного пространства в кровеносный капилляр. Между тем, нахождение их в крови чрезвычайно важно для организма. Поскольку проницаемость лимфатических капилляров для белков выше, чем кровеносных капилляров, белки попадают в кровеносное русло с током лимфы.

Рисунок 278. Схема строения лимфатической системы человека. 1 - лимфатическке сосуды лица; 2 - поднижнечелюстные лимфатические узлы; 3 - латеральные шейные лимфатические узлы; 4 - левый яремный ствол; 5 - левый подключичный ствол; 6 - подключичная вена; 7 - грудной проток; 8 - левая плечеголовная вена; 9 - окологрудинные лимфатические узлы; 10 - подмышечные лимфатические узлы; 11 - цистерна грудного протока; 12 - кишечный ствол; 13 - поверхностные лимфатические сосуды верхней конечности; 14 - общие и наружные подвздошные лимфатические узлы; 15 - поверхностные паховые лимфатические узлы; 16 - поверхностные лимфатические сосуды нижней конечности; 17 - правый поясничный ствол.


 


 


Дата добавления: 2018-09-20; просмотров: 1353; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!