Катушка индуктивности в цепи постоянного тока



Первый закон коммутации гласит: ток, протекающий в катушке индуктивности, в момент коммутации не может измениться скачком. Это понятно из формулы:

На схеме представлена RL – цепь, запитанная от источника постоянного тока. При замыкании ключа в положение 1, ток протекает по цепи “плюс” источника – резистор R – катушка индуктивности - “минус” источника. Тем самым, происходит накопление энергии магнитного поля в катушке индуктивности.

Напряжение и ток, протекающие в данной цепи, изменяются по экспоненциальному закону. Причем, их изменения взаимообратные, т.е. с увеличением тока, падение напряжения на катушке уменьшается.

Если мы переведем ключ в положение 2, то ток, не изменив своего направления, начнет уменьшаться по экспоненте до нуля. С физической точки зрения, в данном случае катушка отдает накопленную энергию магнитного поля в цепь, где она расходуется на тепловые потери в резисторе.

Одной из характеристик данной цепи является постоянная времени τ. Она зависит от величины индуктивности и активного сопротивления. Примерно за 5 τ ток в цепи достигает своего минимума или максимума.

 

61. Зарядка конденсатора от источника постоянного напряжения.

 

Простейшим примеромпереходного процессаможет служить зарядка конденсатора ёмкостью С (рис.) от источника постоянного тока (аккумулятора) с эдс Е и внутренним сопротивлением r через резистор R , ограничивающий ток в цепи. Начиная с момента времени t = 0 , когда замыкается ключ, ток в цепи уменьшается по экспоненциальному закону, приближаясь к нулю, а напряжение увеличивается, асимптотически стремясь к значению, равному эдс источника. Скорость изменения напряжения и тока зависит от ёмкости конденсатора и сопротивления в цепи: чем больше ёмкость и сопротивление, тем длительнее процесс зарядки. Через интервал времени t = (R + rC, называемый постоянной времени зарядки конденсатора, напряжение на его обкладках достигает значения uc = 0,63 Е,а сила тока i=0,37 Io, где Io - начальная сила тока, равная отношению эдс к сопротивлению цепи. Через интервал времени 5t uc>0,99 Е, а сила тока i<0,01 I0,и с погрешностью менее 1% Переходные процессы можно считать закончившимся. За время переходного процесса энергия электрического поля конденсатора увеличивается от нуля до Wc=1/2CE2

 

1. ; ;

2.

3.

4.

; ;

5. ;

6. ;

;

;

Начальные условия – значения токов через катушки индуктивности и напряжений на конденсаторах, известные из докомутационного режима.

Значения u и i на всех элементах схемы при зависимые начальные условия. Они определяются из независимых с помощью исходного диф. уравнения.

7.

 

62. Разрядка конденсатора на сопротивление.

Разряд предварительно заряженного конденсатора через активное сопротивление (через резистор) является простейшим переходным процессом.

Пусть конденсатор ёмкостью С заряжен до напряжения U. В момент t=0 замыкается ключ К и конденсатор начинает разряжаться через активное сопротивление R. Так как здесь внешнего воздействия нет, то в цепи будет только свободный процесс.

Выбрав направление обхода, запишем для этой цепи второе уравнение Кирхгофа:

uRuC=0,или

iRuC=0. (1)

А так как для конденсатора ток i здесьявляется разрядным, то , и тогда , (2)

или ,

где постоянная времениRC-цепочки.

Общее решение этого однородного уравнения имеет вид:

,где А – коэффициент, определяемый начальным условием, т.е. − напряжением на конденсаторев первый момент после замыкания ключа К. Так как, по условию, до замыкания напряжение , а напряжение на конденсаторе скачком измениться не может (это привело бы к тому , что, тогда как в уравнении (2) иС – конечно), то

(это второе правило коммутации).

Это даёт: А=U, и, следовательно,

. (3)

Отсюда видно, что τ – это время, за которое напряжение на конденсаторе убывает в е раз:

2,7.

Реально время переходного процесса оценивается примерно в 3τ, когда напряжение уменьшается в е3 = 20 раз, или когда до установившегося значения осталось лишь 1/20 = 5 % от исходного напряжения U.

63 Нелинейные электрические цепипостоянного тока

В электрические цепи могут входить пассивные элементы, электрическое сопротивление которых существенно зависит от тока или напряжения, в результате чего ток не находится в прямо пропорциональной зависимости по отношению к напряжению. Такие элементы и электрические цепи, в которые они входят, называют нелинейными элементами. Все электрические цепи являются нелинейными. Они могут считаться линейными в ограниченных диапазонах значений токов и напряжений. Электрическое сопротивление линейного элемента пропорционально тангенсу угла наклона его вольтамперной характеристики к оси тока.

В нелинейной электрической цепи сопротивления ее элементов зависят от величины или направления тока или напряжения. Нелинейные элементы имеют криволинейные вольтамперные характеристики, симметричные или несимметричные относительно осей координат. Сопротивления нелинейных элементов с симметричной характеристикой не зависят от направления тока. Сопротивления нелинейных элементов с несимметричной характеристикой зависят от направления тока. Например, электролампы, термисторы имеют симметричные вольтамперные характеристики , а полупроводниковые диоды - несимметричные характеристики. Элементы нелинейной цепи делят на резистивные,

индуктивные и емкостные.

 

64..Статические и динамические сопротивления не линейных элементов

Статическим или интегральным сопротивлением нелинейного элемента называется отношение напряжения на элементе к величине тока. Это сопротивление пропорционально тангенсу угла наклона α между осью тока и прямой, проведенной из начала координат в точку а характеристики.
Здесь mU – масштаб напряжений, mI – масштаб токов.

Дифференциальное или динамическое сопротивление нелинейного элемента - это величина, равная отношению бесконечно малого приращения напряжения на нелинейном сопротивлении к соответствующему приращению тока. Это сопротивление пропорционально тангенсу угла наклона β между осью тока и касательной к точке a характеристики. При переходе от одной точки вольтамперной характеристики к соседней статическое и динамическое сопротивления нелинейного элемента меняются.

 

 


Дата добавления: 2018-08-06; просмотров: 332; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!