Как получить сросшихся близнецов 7 страница



 

 

Сиреномелия, или синдром русалки, у мертворожденного плода.

Из книги Б.К. Херста и Дж.А. Пирсола "Человеческие уродства", 1893 (Библиотека Уэллком, Лондон).

 

Причины возникновения сиреномелии до сих пор полностью неясны. Но недавно две группы ученых независимо друг от друга вывели с помощью генетической инженерии штамм мышей с дефектом по одному конкретному гену. Неожиданно оказалось, что у новорожденных мышей не было хвостов, а задние конечности срослись, в точности как у детей с сиреномелией. По всем признакам это были мыши-русалки.

Мыши-русалки появились в результате делеции гена CYP26A1, который кодирует фермент, регулирующий вещество под названием "ретиноевая кислота".[69] Большинство важных молекул, контролирующих процесс формирования эмбриона, иначе говоря – часть генетической грамматики организма, – это белки, представляющие собой длинные цепи аминокислот. Однако ретиноевая кислота является более мелкой и простой разновидностью молекул, представленной всего лишь углеводородным кольцом с боковой цепью. Это также одна из наиболее загадочных зародышевых молекул. Она трудна для изучения из-за своей небелковой природы. Во-первых, ее нельзя увидеть у эмбриона. Специальные красители, используемые для наблюдения за белками, в случае углеводородного кольца не работают. Во-вторых, раз она не белок, не существует "гена ретиноевой кислоты", или единой цепочки ДНК, которая непосредственно кодировала бы информацию, необходимую для ее получения. Существуют лишь гены, кодирующие ферменты, которые вырабатывают ретиноевую кислоту или разрушают ее, – до обидного непрямая связь между геном и веществом.

Но даже и в этом случае уже давно возникали подозрения, что ретиноевая кислота играет важную роль. Эмбрионы вырабатывают свою ретиноевую кислоту из витамина А. Необходимость в этом веществе стала ясна еще в 1932 году, когда свиноматка, содержавшаяся в Техасском сельскохозяйственном колледже и получавшая диету с дефицитом витамина А, родила одиннадцать поросят с отсутствием глазных яблок.[70] С другой стороны, последствия избытка ретиноевой кислоты выявились в 1980-х годах, когда сходное по молекулярному составу вещество – изотретиноин – стали интенсивно прописывать для лечения прыщей-акне. Лекарство принимали через рот, и, хотя его тератогенное воздействие к тому времени было уже установлено, некоторые женщины продолжали пользоваться препаратом на ранних стадиях беременности из-за того, что еще не подозревали о своем материнстве. В одном исследовании были изучены результаты тридцати шести таких беременностей: двадцать три ребенка родились внешне нормальными, восемь беременностей закончились выкидышами, пять детей родились с аномалиями, в том числе с волчьей пастью, нарушениями сердца, центральной нервной системы и отсутствием ушей.[71]

Некоторые ученые пытались повторить этот незапланированный эксперимент, окуная зародыши животных в ретиноевую кислоту, а потом отслеживая деформации. Часто в результате возникала смесь различных нарушений, примерно так, как это было у младенцев, подверженных воздействию изотретиноина. Но иногда последствия были более впечатляющими. Если головастику ампутировать хвост, то обычно у него в короткое время вырастает другой. Но если хвост ампутировать и культю помазать раствором ретиноевой кислоты, то у головастика вырастет букет из лишних ног. Этот эксперимент отчетливо показывает, что ретиноевая кислота – мощное средство. Он также позволяет предположить, что головастики могут использовать ретиноевую кислоту для регуляции своих задних отделов. Однако это еще не есть доказательство. Можно возразить, что ретиноевая кислота является, по существу, экзотическим видом отравляющего вещества, которое совершенно неестественным образом влияет на нормальный ход эмбрионального развития.

В этом и заключается значение мышей-русалок. Они впервые позволяют реально понять, для чего зародыши используют ретиноевую кислоту. Видимо, это морфоген, причем один из самых важных для эмбриона. Действительно, его можно даже назвать супер- морфогеном, который действует и вдоль и поперек эмбриона. Будучи углеводородным кольцом, он, однако, действует абсолютно отлично от других морфогенов. В то время как молекулы сигнальных белков слишком велики, чтобы проникнуть в клетку, и поэтому прикрепляются к рецепторам на ее поверхности, ретиноевая кислота проходит сквозь клеточные мембраны и присоединяется к рецепторам внутри клетки, которые внедряются прямо в ядро, где они включают или выключают гены.

Откуда берется ретиноевая кислота? И что она в точности делает? Ген CYP26A1 кодирует фермент, который разрушает ретиноевую кислоту. Мыши с дефектом этого гена имеют слишком большое количество ретиноевой кислоты. Их русалочьи конечности вызваны аномальным избытком этого вещества в задней части зародыша. Задний отдел эмбриона – это не единственное место, подверженное воздействию высоких концентраций ретиноевой кислоты. Дети и мыши с сиреномелией также характеризуются дефектами головы, из чего следует, что ретиноевая кислота в норме там тоже отсутствует. Действительно, сегодня принято считать, что если изобразить, как ретиноевая кислота распределяется по всему зародышу, то получится следующий график: пик в районе будущей шеи эмбриона с дальнейшим падением градиента во всех направлениях – в разные стороны, вперед и назад. Это модель тщательно сконструированной пространственной структуры, которая поддерживается равновесием ферментов, создающих и разрушающих морфоген. У лягушек с лишними ногами, мышей-русалок, детей с сиреномелией и плодов, пострадавших от воздействия противоугревых препаратов, этот баланс нарушен, так что вместо подъемов и спадов остается только плохо определяемое плато.[72]

 

Калькулятор судьбы

 

Морфогены, пронизывающие развивающийся эмбрион, будь то белки или углеводородные кольца, снабжают клетки своеобразной координатной сеткой, которой те пользуются, чтобы определить, где находятся и, следовательно, что они должны делать и кем стать. Клетка, таким образом, напоминает мореплавателя, который бороздит пучины океана и с помощью секстанта и хронометра определяет долготу и широту. Но между мореходом и клеткой есть одна большая разница: в то время как ориентиры первого – звезды и планеты – всегда находятся там, где им и следует быть, в случае с клеткой дело подчас обстоит по-другому. Сиреномелия и циклопия – это примеры того, как мутация видоизменяет вселенную, по которой ориентируются клетки, или вообще приводит к ее полному краху.

И все же, несмотря на это различие (неизбежно возникающее при сравнении физического мира с его точными, как у часового механизма, движениями и биологических объектов, построенных, в полном смысле слова, на живую нитку), аналогия по-прежнему остается в силе. Ибо, невзирая на постоянство небес, мореплаватели всегда теряли свой путь в океане – быть может, из-за того, что приборы, с помощью которых они ориентировались, становились непригодны. Точно так же и рецепторы, которые помогают клетке воспринимать морфогены и определять их концентрацию, начинают ошибаться, и тогда любое количество врожденных нарушений может быть вызвано поражающими их мутациями.

Но, наверное, самый глубинный подтекст этого сопоставления связан с тем, что мореплаватели проводят сложные вычисления, чтобы установить, где они находятся. Клетки тоже калькулируют – причем делают это с большой точностью, поглощая информацию из окружающей среды, суммируя ее и получая искомый результат. Этот калькулятор – его можно назвать калькулятором судьбы – состоит из большого числа белков, объединяющих свои усилия внутри каждой клетки, чтобы прийти к верному решению. Конечно, калькулятор не безупречен: у клеток, как и у мореходов, в итоге иногда получаются неверные цифры.

Каковы последствия таких сделанных клетками ошибок, прекрасно иллюстрирует один из наиболее любопытных образцов эротического искусства, обнаруженный при раскопках Геркуланума. Это мраморная статуэтка, размером не больше коробки из-под обуви, которая изображает козлоногого бога Пана, римляне называли его Фавном, насилующего козу. Соединив в искусной композиции равные по величине фигурки животного и человекоподобного божества, неизвестный художник наделил Пана обросшими шерстью ногами, раздвоенными копытами, толстыми губами, уплощенным лицом с написанным на нем выражением полной поглощенности актом насилия. Он также снабдил бога необычной анатомической характеристикой. На шее у Пана прямо над ключицами болтаются две небольших свисающих дольки, или мочки, которые не превысили бы в длину нескольких сантиметров, если бы Пан был изображен в "натуральную" величину.

 

 

Дополнительные мочки на шее козы и сатира. "Пан, насилующий козу".

Римская копия древнегреческого оригинала, II-III в. до н.э. (Вилла деи Папири в Геркулануме, Национальный археологический музей в Неаполе).

 

Такие хорошо заметные образования появляются в изображениях Пана только во II или III веках до н.э., или, как на этой статуе (ныне находящейся в Секретном кабинете Археологического музея Неаполя), в более поздних римских копиях с греческого оригинала. Бесчисленные козлоногие боги, скачущие по черно- или краснофигурным вазам классического периода, преследуя пастухов и хватая нимф, не обладали этой особенностью, равно как и аллегории Пана эпохи Ренессанса или барокко, как, например, на картине Сандро Боттичелли "Марс и Венера" или Аннибале Караччи "Любовь побеждает все". Мочки на шее были бы также абсолютно неподходящей деталью для прекрасных, но скучных Панов прерафаэлитов.

Происхождение шейных мочек у Пана легко объяснить: они перекликаются с парой идентичных образований, болтающихся на шее у его жертвы. Шейные мочки часто присутствуют у домашних коз: немецкие пастухи называют их Glocken – бубенчики, или сережки. Скульптор оригинальной композиции "Пан, насилующий козу" наверняка был внимательным наблюдателем природы. Наделив Пана мочками, он придал ему еще одну деталь, подчеркивающую его козлиную природу. Однако мочки на шее встречаются не только у коз, но также, хотя и достаточно редко, у людей. В 1858 году британский врач по фамилии Биркетт опубликовал короткое сообщение о семилетней девочке, которую привели к нему на прием, с парочкой торчащих по обе стороны шеи образований. Они были у нее с момента рождения. Хотя Биркетт не был уверен в их природе, он все же удалил их и, изучив под микроскопом, убедился, что это ушные раковины: у девочки была дополнительная пара наружных ушей.[73]

 

 

Дополнительные мочки у восьмилетней девочки, Англия, 1858 г.

Из книги Уильяма Бейтсона "Материалы для изучения изменчивости", 1894 (Империал-колледж, Лондон).

 

Добавочные уши – это пример явления, называемого гомеозисом, при котором одна часть развивающегося зародыша аномально трансформируется в другую. Вышеописанная трансформация, которая приводит к появлению ушей на шее, имеет место примерно в пять месяцев после зачатия, когда на каждой стороне головы зародыша образуется пять хрящевых дуг, помещающихся примерно там же, где находились бы жабры, будь эмбрион рыбой. Действительно, если бы эмбрион становился рыбой, они превратились бы в жаберные дуги. У людей из них формируются разнообразные части головы, в том числе челюсти, мельчайшие косточки внутреннего уха и набор хрящей горла. Видимые, выступающие части нашего уха развиваются из расщелины между первой и второй парой дуг. Остальные щели при этом обычно зарастают, делая наши шеи гладкими, но иногда у людей и, как правило, у коз одна из ниже расположенных щелей остается открытой и формирует нечто, напоминающее ухо. Сходство это, однако, лишь поверхностное: "уши" лишены внутренней структуры, которая позволяла бы им слышать.

 

Гомеозис был впервые открыт как особое явление британским биологом Уильямом Бейтсоном, который в книге 1894 года "Материалы для изучения изменчивости" предложил сам термин и привел около десятка собранных им примеров подобных трансформаций.[74] "Материалы..." чем-то напоминали средневековый бестиарий – или, как говорил сам Бейтсон, "воображаемый музей", в котором дети с добавочными ушами и телки с дополнительным числом сосков соперничали за место под солнцем с пятикрылыми бабочками, восьминогими жуками и омарами, у которых вместо глаз были антенны. В общем, странная получилась книга. И все же "Материалы..." и в наши дни не утратили своего значения и продолжают цитироваться молекулярными биологами, что можно считать редкостью для зоологических компендиумов XIX века. Это происходит потому, что выявленные Бейтсоном трансформации указывают путь к одному из самых замечательных механизмов эмбриона – генетической программе, которая позволяет клеткам, а тем самым тканям и органам, становиться отличными друг от друга. Гомеозис указывает путь к калькулятору судьбы.

Калькулятор судьбы был впервые открыт у плодовых мушек. Мухи, как и дождевые черви, разделены на повторяющиеся звенья, или сегменты. Эти сегменты особенно заметны у личинок, хотя метаморфоз иногда скрывает их границы. Многие сегменты у взрослых мух так или иначе специализированы. Головные сегменты несут на себе губные щупики (с помощью которых муха питается) и антенны (которые нужны для обоняния); грудные (торакальные) сегменты снабжены крыльями, ногами и небольшими, предназначенными для равновесия органами, которые называются жужжальца; брюшные (абдоминальные) сегменты не имеют никаких придатков. Вопрос о том, какие именно органы будут у данного сегмента, решается во время эмбрионального развития, задолго до того, как эти органы можно будет увидеть. Или, выражаясь более абстрактно, у эмбриона каждый сегмент получает свою идентичность.

За последние восемьдесят с лишним лет генетики, специализирующиеся на дрозофилах, искали и обнаружили десятки мутаций, разрушающих идентичность сегментов. Некоторые из этих мутаций заставляют мух отращивать ноги вместо антенн у себя на головах; другие вынуждают жужжальца превращаться в крылья, создавая тем самым четырехкрылое двукрылое, что противоречит главной характеристике насекомого. Но есть и такие мутации, которые заставляют крылья становиться жужжальцами – и обрекают муху на безысходно земное существование.

Эти мутации вносят разрушения в целый ряд генов, которые, в знак признания заслуг Уильяма Бейтсона, получили название гомеозисных.[75] Их всего восемь, и они имеют такие, например, названия, как: Ultrabithorax, Antennapedia, или, попроще, – deformed (деформированный). Эти названия напоминают о странных мухах, которые появляются на свет, пораженные теми или иными мутациями. Гены – переменные в уравнении, решение которого делает каждый сегмент отличным от другого.

Калькулятор судьбы сегмента – необычайно красивая вещь. Он имеет экономную булевскую[76] логику компьютерной программы. Каждый белок, кодируемый гомеозисным геном, присутствует в отдельных сегментах. Некоторые имеются в голове, другие – в грудной клетке, третьи – в брюшных сегментах. Идентичность сегмента – и те придатки, которые на нем вырастут, – зависит от точной комбинации гомеозисных белков, присутствующих в его клетках. Так, например, уравнение для третьего грудного сегмента, на котором в норме располагаются жужжальца, будет иметь примерно следующий вид:

 

Если Ultrabithorax присутствует,

А все остальные постериорно расположенные гомеозисные белки отсутствуют,

Тогда третий грудной сегмент имеет: ЖУЖЖАЛЬЦА.

 

Это попросту означает, что Ultrabithorax необходим для того, чтобы на третьем грудном сегменте выросли жужжальца, то есть чтобы он и стал именно  третьим грудным сегментом. В случае мутации гена кодируемый им белок, даже если и будет присутствовать, не сможет выполнить своей функции. Уникальная идентичность сегмента потеряна: он становится вторым торакальным сегментом и будет снабжен крыльями.

 

Когда в 1980-х годах были проведены эксперименты по клонированию и секвенированию гомеозисных генов, оказалось, что они кодируют молекулярные переключатели – белки, которые включают и выключают гены. Молекулярные переключатели контролируют продукцию матричной (информационной) РНК. Большая часть генов содержит информацию для создания белков. Однако эта информация должна быть каким-то образом передана. Этой цели служит матричная РНК, молекула, похожая на ДНК, с той разницей, что это не двойная спираль, а просто длинная цепь нуклеотидов. Матричная РНК – это копия ДНК, продуцируемая с помощью механизма, который передвигается по генным последовательностям, как локомотив по рельсам. Молекулярные переключатели, или, как их правильно называют, факторы транскрипции, контролируют этот процесс. Связываясь с "регуляторами" – небольшими последовательностями ДНК, окружающими каждый ген, факторы транскрипции модифицируют работу молекулярного механизма, который отвечает за создание матричной РНК, и пытаются влиять на этот процесс. Некоторые факторы транскрипции стремятся ускорить работу механизма, другие, напротив, приостановить ее. Связанные с регуляторами, факторы транскрипции противостоят друг другу и соревнуются за контроль над двойной спиралью. Подобно любым конфронтациям, исход зависит от равновесия сил: разнообразия противостоящих друг другу групп или просто их численного соотношения.

Последовательности восьми гомеозисных генов плодовой мушки совершенно различны. И все же в каждой из них есть область – последовательность всего лишь из 180 пар оснований, которая кодирует, с небольшими вариантами, следующую цепочку аминокислот:

RRRGRQTYTRYQTLELEKEFHTNHYLTRRRRIEMAHALCLTERQIKIWFQNRRMKLKKEI.

Это гомеобокс. В изобилующей субмикроскопическими выступами и складками трехмерной структуре гомеозисного белка именно последовательность гомеобокса, гнездящегося в бороздках двойной спирали ДНК, приводит гомеозисные белки к цели – сотням, а может быть, и тысячам генов, находящихся под их контролем. Мельчайшие различия в гомеобоксе каждого белка позволяют ему контролировать определенные наборы генов.

Открытый в 1984 году гомеобокс, столь же характерный, как губа Габсбургов, означал, что гомеозисные гены все связаны друг с другом и представляют собой особое семейство. Они найдены в червях, улитках, морских звездах, рыбах и мышах. Обнаружены они и у нас. Возможно, они были у самых первых животных, которые выползли из докембрийского болота миллиарды лет назад. Но еще более интригующим оказывается следующий вопрос: если гомеобоксные гены обеспечивают работу цепей в калькуляторе частей у плодовой мушки, могут ли они выполнять ту же функцию у всех живых существ, включая человека? Молекулярные биологи – не те люди, которые склонны гиперболизировать, но когда они нашли гомеобокс, то вспомнили о Священном Граале и Розеттском камне.

 

И в этом они были абсолютно правы. Почему – показывает еще один из экспонатов Фролика, на этот раз скелет. С первого взгляда он кажется довольно скучным образцом человеческого скелета. Он не искривлен рахитом и не согнут ахондроплазией; в нем нет ничего необычного, разве только то, что его череп, конечности и таз давным-давно где-то потерялись. Остался лишь позвоночник с характерными изгибами и коричневатыми ребрами, крепящийся на заржавленной металлической опоре, – в целом довольно жалкое зрелище. Его даже не выставляют в экспозиционных галереях, он прописан в подвале, где соседствует на полке с другими скелетами, собранными в течение столетия, но сейчас представляющими собой комплекты костей, которые выдаются по требованию специалистов. И тем не менее именно этот скелет пользуется негромкой славой. Каждую весну его выносят на свет божий, когда демонстрируют новой группе студентов-медиков государственного университета, которым предстоит определить его аномалию. Обнаружить ее на удивление трудно, хотя, после подсказки, кажется, что это проще простого: у скелета лишняя пара ребер.


Дата добавления: 2018-08-06; просмотров: 279; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!