Влияние конструктивных и эксплуатационных факторов на маневренность АТС.



Маневренность существенно зависит от конструкции автомо­биля: углов поворота управляемых колес, базы, размеров свесов, конструкции сцепных устройств автопоездов, габаритных разме­ров прицепов и полуприцепов, а также от усилия, прилагаемого водителем к рулевому колесу, при маневрировании автомобиля.

Показатели маневренности существенно зависят от числа уп­равляемых колес у автомобиля. Так, у двухосного автомобиля со всеми управляемыми колесами минимальный радиус поворота Rmin в два раза меньше, чем у такого же автомобиля, но с передними управляемыми колесами. При этом у автомобиля со всеми управ­ляемыми колесами улучшаются и остальные показа­тели маневренности.

Однако при всех управляемых колесах усложняется конструк­ция автомобиля и затрудняется отъезд автомобиля от края троту­ара, к которому он стоял вплотную. Кроме того, у такого автомо­биля нарушается устойчивость при входе в поворот. Устранить ука­занные недостатки можно блокированием системы управления задних колес в нейтральном положении как при отъезде от троту­ара, так и при движении автомобиля с высокой скоростью.

У трехосного автомобиля с передними управляемыми колеса­ми значительное влияние на показатели маневренности оказыва­ет соотношение между базой l тележки среднего и заднего мостов и базой L автомобиля. Так, например, для трехосного автомобиля общего назначения оптимальное соотношение этих баз 1/L < 0,3.

У прицепного автопоезда существенное влияние на его манев­ренность оказывают длина дышла и база прицепа. При уменьше­нии этих параметров маневренность прицепного автопоезда по­вышается.

У седельного автопоезда значительное влияние на маневрен­ность оказывает соотношение длины автомобиля-тягача и полу­прицепа.

Прицепные автопоезда имеют лучшую маневренность, чем се­дельные. Это подтверждают показатели маневренности аналогич­ных по грузоподъемности седельных и прицепных автопоездов. Так, например, при повороте на 90° ширина полосы движения седель­ного автопоезда может быть больше на 60 %, чем у трехзвенного автопоезда (с двумя прицепами), а при повороте на 180° она мо­жет возрасти на 100 %.

Одиночные автомобили более маневренны, чем прицепные и седельные автопоезда. При движении автомобиля-тягача с прице­пом или полуприцепом маневренность ухудшается, так как при поворотах автопоезда прицеп или полуприцеп смещается к центру поворота. Вследствие этого ширина полосы движения автопоезда больше, чем у одиночного автомобиля. При этом ши­рина полосы движения автопоезда возрастает с увеличением базы и ширины прицепа и полуприцепа, а также числа буксируемых прицепов. Кроме того, при движении автопоезда на поворотах воз­никают поперечные колебания прицепа, которые могут привести к нарушению устойчивости автопоезда.

Ухудшение маневренности автомобиля влечет за собой ухуд­шение его проходимости. Так, ширина полосы движения (пово­ротная ширина автомобиля), характеризующая его маневренность на малых площадках (карьеры, стройки, товарные дворы желез­нодорожных станций и т.д.), определяет также проходимость ав­томобиля в горизонтальной плоскости.

 

70-72) ПРОХОДИМОСТЬ АВТОМОБИЛЯ

Под проходимостью понимается способность автомобиля перевозить с высокой средней скоростью груз, пассажиров или специальное оборудование в тяжелых дорожных или внедорожных условиях. Проходимость автомобиля — комплексное свойство, характеризующее его подвижность и экономичность. Оно неразрывно связано со способностью автомобиля наиболее эффективно выполнять транспортную работу в заданных дорожных условиях. По уровню проходимости автомобили принято делить на три категории: ограниченной, повышенной и высокой проходимости.

Основные определения

Автомобили ограниченной проходимости (дорожные автомобили) предназначены для эксплуатации на дорогах с твердым покрытием и грунтовых дорогах в сухое время года. При использовании дополнительных средств (цепи противоскольжения, арочные шины) они могут работать и в более сложных условиях. Сюда относятся неполноприводные автомобили типа 4X2, 6X2, 6x4, 8X4. Автомобили повышенной проходимости конструктивно незначительно отличаются от дорожных. Как правило, такие автомобили создаются на базе дорожных, а повышение проходимости обеспечивается приводом на все колеса, постановкой дополнительной раздаточной коробки, использованием шин с пониженным или регулируемым давлением воздуха. В некоторых случаях устанавливают блокируемые дифференциалы или дифференциалы повышенного трения, лебедки и другие приспособления для преодоления препятствий. Автомобили высокой проходимости создаются специально для работы в условиях бездорожья, они должны обладать способностью преодолевать встречающиеся на местности препятствия: канавы, вертикальные уступы, подъемы и др. В отдельную группу по проходимости выделяются специальные автомобили. Они создаются для эксплуатации в определенных условиях: Крайнего Севера, на заболоченной или песчаной местности и др. Такие автомобили имеют особую компоновку и, как правило, специальные типы движителей. Автомобиль или автопоезд может потерять подвижность вследствие: задевания выступающими частями за неровности дорожной поверхности, опа­сности опрокидывания или невозможности преодоления подъемов или из-за недостаточной окружной силы на ведущих колесах для преодоления сопротивления движению на поверхностях со слабой несущей способностью. В соответствии с этим различают препятствия, обусловленные профилем местности и вызванные слабой несущей способностью опорной поверхности. Способность автомобиля преодолевать названные препятствия оценивается профильной и опорно-сцепной проходимостью. На труднопроходимых маршрутах встречаются те и другие виды препятствий. Поэтому проходимость автомобиля в целом зависит от его профильной и опорно-сцепной проходимости.

Профильная проходимость

Профильная проходимость зависит от компоновки автомобиля и оценивается геометрическими параметрами проходимости, которые определяют по компоновочным чертежам или путем измерения натурных образцов. Все измерения проводятся при полной нагрузке автомобиля на горизонтальной площадке с твердым и ровным покрытием. Дорожный просвет — расстояние от опорной поверхности до наиболее низкой точки автомобиля, расположенной между колесами. Обычно это точки под картерами главных передач ведущих мостов и в местах расположения рессор. В технических характеристиках автомобилей мо­гут приводиться несколько значений дорожного просвета. Например, дорожный просвет под передним и задним мостами. У современных легковых автомобилей дорожный просвет составляет 150...220 мм, автобусов — 220...300 мм, а у грузовых автомобилей ограниченной и повышенной проходимости — 240...300 мм. В нормативах СЭВ рекомендуется для грузовых автомобилей обеспечивать дорожный просвет не менее 270 мм. У автомобилей высокой проходимости за счет применения колесных передач и крупноразмерных шин дорожный просвет достигает 400...500 мм. Передним и задним углами свеса ограничивается проходимость автомобиля при проезде через канавы, пороги, крутые переломы. Углы свеса — это углы между плоскостью опорной поверхности и плоскостью, касающейся колес и наиболее выступающей точки автомо­биля. Большие углы свеса обеспечивают возможность преодоления, автомобилем крутых препятствий, не задевая их. Наибольшие углы свеса имеют автомобили высокой проходимости: передний 60...70° и задний 50...60°. Продольный радиус проходимости — радиус условной цилиндрической неровности, через которую автомобиль может проехать, не задевая ее наинизшей точкой, расположенной в его средней части. В некоторых случаях для оценки проходимости автомобилей через препятствия соизмеримые с колеей автомобиля, используют понятие попе­речный радиус проходимости. Способность автомобиля приспосабливаться к неровностям местности без потери контакта колес с дорогой зависит от возможных углов перекоса мостов. Угол перекоса находится как сумма углов перекоса переднего и заднего мостов относительно горизонтальной плоскости. У автомобилей, имеющих ведущие мосты, которые сгруппированы в балансирную тележку, определяют также возможные углы перекоса мостов тележки. Способность автопоезда двигаться по пересеченной местности оценивается углами гибкости в вертикальной плоскости. По существующим нормативам угол гибкости g у автопоезда с двухосным прицепом должен быть не менее ±62°, а у седельного автопоезда — ±8°. Способность автомобиля или автопоезда маневрировать в ограниченном пространстве характеризуется минимальным радиусом поворота и шири­ной габаритного коридора поворота. Для автопоездов дополнительно определяют углы гибкости в горизонтальной плоскости. Они должны быть не менее 55° у автопоездов с двухосными прицепами и 90° — у седельных автопоездов. Профильная проходимость автомобилей в значительной мере определяется их способностью преодолевать отдельные препятствия. Максимальный подъем, который автомобиль может преодолеть, зависит от окружной силы, развиваемой ведущими колесами, и от угла его продольной устойчивости — угла между плоскостью, нормальной к опорной поверхности и проходящей через центр масс, и плоскостью, проходящей через центр масс и точки контакта задних колес с дорогой. Этот угол определяет возможность опрокидывания автомобиля относительно задней оси. У автомобилей обычной компоновки он всегда больше угла максимального подъема, преодолеваемого ими, и поэтому опрокидывание относительно задней оси оказывается практически невозможным. Только для автомобилей специальной компоновки с очень высоким расположением центра масс следует анализировать устойчивость при преодолении максимальных подъемов. Максимальная окружная сила, развиваемая ведущими колесами автомобиля, как правило, ограничена сцеплением ведущих колес с опорной поверхностью. Иногда у дорожных автомобильных поездов она ограничивается вследствие недостаточного крутящего момента, передаваемого через трансмиссию к ведущим колесам. Найдем максимальный угол подъема, преодолеваемого автопоездом с тягачом 4X2, при условии, что его значение ограничено сцеплением ведущих колес с опорной поверхностью. Примем, что сцепление под обоими колесами моста одинаково. Автомобили и автопоезда способны преодолевать подъемы по твердым склонам следующей крутизны: автопоезда с неполноприводными тягачами — 11...13°; одиночные неполноприводные автомобили — 20...25; автопоезда с полноприводными тягачами — 15...20; полноприводные одиночные автомобили — 27...35°. Нормативными документами определено, что автомобильные поезда должны преодолевать подъемы с твердой опорной поверхностью крутизной не менее 18 % (10,2°), а одиночные автомобили — 25 % (14°).Спуск опасен тем, что на нем возможно опрокидывание автомобиля относительно передних колес. У автомобилей обычной компоновки при равно­мерной скорости движения потеря устойчивости вследствие опрокидывания может произойти лишь на спусках крутизной более 45°. Если же автомо­биль на спуске встречает препятствие, возникает инерционная сила, направление которой совпадает с направлением движения автомобиля. В силу увеличения опрокидывающего момента вероятность опрокидывания возрастает. Аналогичные явления происходят при резком торможении на спуске. Опрокидывание автомобиля может произойти также и в конце спуска, когда сопротивление движению в момент перехода с наклонного участка на горизонтальный резко возрастает. При опрокидывании автомобиля в рассматриваемых условиях затрачивается энергия на подъем центра масс за счет кинетической энергии автомобиля. Поэтому для уменьшения вероятности опрокидывания скорость спуска не должна быть большой. Расчеты показывают, что для автомобилей обычной компоновки при предельных углах спуска до 30° скорость движения во избежание опрокидывания не должна превышать 10 км/ч. Возможность преодоления рва определяется числом и расположением мостов, размером колес и положением центра масс автомобиля по базе. Для двухосных и трехосных автомобилей (если центр масс расположен не над средним мостом), ширина преодолеваемого рва зависит от размеров колес. Испытания показывают, что такие автомобили способны преодолеть ров с прочными кромками шириной до 1... 1,3 радиуса колеса (большие значения относятся к автомобилям со всеми ведущими колесами). Для трехосных автомобилей с равномерным расположением мостов и четырехосных ширина преодолеваемого рва может быть значительной и опре­деляется базой автомобиля, расстановкой колес и положением центра масс по длине. Высота преодолеваемого автомобилем порогового препятствия зависит главным образом от размера колеса и жесткости кромки порога. Максимальная высота преодолеваемого неполноприводными автомобилями порога составляет 0,3...0,5 радиуса колеса, а полноприводными — 0,5...0,8.

Максимальная глубина преодолеваемого брода зависит от конструкции автомобиля. Лимитирующими элементами при твердом основании брода являются уровни расположения лопастей вентилятора, всасывающего патрубка, аккумулятора, генератора, системы зажигания, воздухосоединительных отверстий картеров механизмов трансмиссии. Для увеличения глубины преодолеваемого брода у автомобилей повышенной и высокой проходимости выходы всасывающих и выхлопных патрубков стремятся расположить высоко, вентилятор изготовляют с отключающимся приводом, а генератор, систему зажигания, картеры мостов и колесные тормоза — герметичными. При таком конструктивном выполнении автомобили могут преодолевать брод глубиной до 1,6...1,8 м.

Опорно-сцепная проходимость

Опорно-сцепная проходимость автомобиля зависит от эффективности использования несущих свойств грунта и определяется главным образом конструкцией движителя и трансмиссии автомобиля. Опорно-сцепная проходимость зависит также от формы корпуса, типа подвески, удельной мощности автомобиля и др. Грунты и снег относятся к дисперсным средам, основным отличием которых от сплошных является то, что находящиеся в них твердые частицы не образуют сплошной массы, а занимают лишь часть объема. При этом прочность связи между отдельными частицами значительно меньше прочности материала этих частиц. При действии внешней нагрузки происходят перемещения, сдвиги отдельных твердых частиц относительно друг друга. По составу различают минеральные грунты и грунты органического происхождения. Минеральные грунты подразделяются на ряд категорий. В основу такого деления положены размеры и соотношение частиц двух фракций: глинистой и песчаной. Классификация по этим признакам назы­вается гранулометрической. В зависимости от относительного содержания глинистых и песчаных фракций минеральные грунты делятся на глины (содержание глинистых частиц по массе более 30%), суглинистые грунты — (10...30%), супесчаные (3...10 %) и песчаные (менее 3 %). Грунты, состоящие из отложений частиц органического вещества, занимают особое место. К ним относятся различные виды торфяно-болотных и илистых грунтов, которые различаются по влажности, составу и происхождению. Механические свойства грунтов в большой степени зависят от их влажности. При незначительном увлажнении связных грунтов вода находится в них в виде тонких пленок или заполняет тончайшие волосяные промежутки между частицами. В таком состоянии она малоподвижна, слабо испа­ряется и способствует повышению связности грунта. С повышением содержания воды заполняются более крупные поры грунта и увеличивается толщина водяных пленок на его частицах. Превышение определенных пределов влажности, характерных для каждого грунта.

Опорно-сцепная проходимость

Основными параметрами шин, определяющими характер их взаимодействия с опорной поверхностью, являются наружный диаметр и форма по­перечного сечения шины. Шины в зависимости от отношения ширины профиля к его высоте делят на четыре типа: тороидные, широкопрофильные, арочные, пневмокатки. Тороидные шины с нерегулируемым давлением устанавливают обычно на дорожных автомобилях. Радиальная деформация их под номинальной на­грузкой не превышает 12... 15 % высоты профиля. Поэтому опорная площадь небольшая и соответственно давление относительно высокое. Рисунок протектора, как правило, дорожный, мелкий. Такие шины на деформируемых грунтах не обеспечивают высокой проходимости автомобиля. В настоящее время изготовляют тороидные шины, способные работать при переменном давлении (шины с регулируемым давлением). Эти шины, установленные на автомобилях повышенной проходимости, обеспечивают их движение по грунтам со слабой несущей способностью. Широкопрофильные шины первоначально создавались как специальные шины для автомобилей повышенной и высокой проходимости. При нормаль­ном давлении воздуха опорная площадь у широкопрофильных шин на 30...35 % больше, чем у тороидных такой же грузоподъемности. При пони­жении давления опорная площадь увеличивается более чем в два раза. Рисунок протектора характерен для шин высокой проходимости. В последнее время широкопрофильные шины применяются также и для дорожных легковых и грузовых автомобилей. Такие шины работают при постоянном давлении воздуха в них. Рисунок протектора — дорожный. Арочные шины имеют профиль в виде арки и сильно развитые грунтозацепы. Работают при постоянном давлении воздуха 0,05...0,15 МПа. Это позволяет обеспечить относительно низкое давление на грунт и хорошее сцепление колес. Скорость движения автомобилей по твердым дорогам ограничена. Такие шины применяют в основном как средство для повышения проходимости автомобилей в определенные сезоны года, устанав­ливая их вместо сдвоенных колес. Пневмокатки — специальные шины, имеющие тонкую резинокордную оболочку и работающие при малом внутреннем давлении воздуха (0,02...0,1 МПа). Применяются только на специальных машинах, предназначенных для движения в особо трудных условиях. Наиболее труднопроходимые для автомобиля грунтовые и заснеженные поверхности в первом приближении могут быть сведены к четырем видам, различным по физико-механическим свойствам и характеру взаимодействия с движителем: переувлажненный грунт, болото, сухой песок, снег. Движение по переувлажненному грунту сопровождается образованием колеи, глубина которой оказывает непосредственное влияние на сопротивле­ние качению. Из формулы следует, что глубина колеи зависит от диаметра колеса, ширины профиля и нагрузки на колесо. Этими параметрами определяется среднее давление колеса на грунт. Если бы шина была абсолютно эластичной, давление колеса на грунт определялось бы давлением воздуха в шине. Поскольку часть нагрузки передается через каркас шины, давление на грунт зависит от соотношения жесткости шины и грунта. Если жесткость шины больше, чем жесткость грунта, она будет погружаться в грунт не деформируясь, т. е. пневматическая шина будет работать как жесткое колесо. Если же жесткость шины меньше жесткости грунта, шина деформируется. Это приведет к увеличению поверхности контакта шины с грунтом, уменьшению на него давления и сопротивления качению. На деформируемых грунтах площадь опорной поверхности может быть увеличена за счет увеличения ширины шины и ее диаметра и уменьшения давления воздуха в ней. Наиболее предпочтительным является увеличение диаметра колеса и снижение внутреннего давления в шине, так как с увеличением ее ширины растет объем деформируемого грунта и тем самым увеличивается сопротивление качению. Поскольку при уменьшении давления воздуха в шине площадь контакта растет в большей степени по длине, для повышения проходимости автомобиля целесообразно применять шины, давление воздуха в которых можно уменьшать при движении по деформируемым поверхностям. Как следует из формулы, коэффициент сопротивления качению по деформируемым грунтам определяется гистерезисными потерями энергии в шине и затратами ее на перемещение и деформацию грунта. Минимальное сопротивление качению соответствует определенному давлению воздуха в шине. При увеличении давления воздуха в шине свыше этого значения сопротивление качению возрастает из-за увеличения глубины следа (колеи), а при уменьшении — из-за большой деформации шины. Очевидно, что для каждого типа и состояния грунта может быть найдено оптимальное давление воздуха в шине, при котором сопротивление качению будет минимальным. Оптимальное давление обеспечивается при установке на автомобилях повышенной и высокой проходимости систем регулирования давления воздуха в шинах. Возможность движения по деформируемым грунтам определяется также реализуемой окружной силой, максимальное значение которой по аналогии со случаем качения колеса по недеформируемой поверхности будем характеризовать коэффициентом сцепления. При движении по связным грунтам коэффициент сцепления в значительной степени зависит от давления воздуха в шине, размеров и формы грунтозацепов. С уменьшением давления в шине увеличивается площадь контакта и большее число грунтозацепов вступает в работу. Форма грунтозацепов оказывает влияние на сцепление, самоочищаемость и эластичность шины. При грунтозацепах с наклонной упорной поверхностью повышается уплотнение грунта между ними, вследствие чего возрастает сопротивление грунта срезу. Сужение грунтозацепа к вершине, а также расположение грунтозацепов под углом 45° к продольной оси шины способствует самоочищаемости протектора и обеспечивает хорошее сцепление ее с грунтом во всех направлениях. При качении шины с сильно расчлененным протектором по твердой дороге возникают вибрации колеса при ударах грунтозацепов о поверхность дороги. Для устранения этого явления у автомобилей, предназначенных для работы по бездорожью и твердым дорогам, применяются шины с универсальным протектором, у которых безударное качение обеспечивается за счет применения сплошного пояса в средней части беговой дорожки. Если толщина слоя переувлажненного грунта невелика, иногда целесообразно увеличивать давление воздуха в шинах. При этом колесо прорезает переувлажненный слой и входит в контакт с твердым основанием. Это обеспечивает возможность создания большой окружной силы колеса. Песок и сухой кристаллический снег относятся к несвязным грунтам. Несущая способность их определяется в основном коэффициентом внутреннего трения. Низкая проходимость автомобиля наблюдается только при достаточно большой толщине слоя песка или снега. Если слой песка или снега небольшой толщины лежит на прочном основании, сопротивление качению незначительно. Уменьшить сопротивление качению по слою несвязного грунта большой толщины можно главным образом за счет уменьшения давления воздуха в шинах. Сцепление колес с песчаным грунтом также определяется в основном внутренним трением в грунте. В зависимости от давления на грунт коэффи­циент сцепления шин с сухим песком ср = 0,2...0,7.

С началом буксования колеса происходит сдвиг песка. Это приводит к увеличению глубины колеи. В этом случае наличие грунтозацепов обусловли­вает разрыхление верхнего слоя грунта и увеличение глубины колеи. Поэтому наилучшей проходимостью по песку обладают машины, оборудованные пневмокатками с малым давлением воздуха в них и грунтозацепами малой высоты. При преодолении участков сыпучих песков из-за опасности их разрыхления не рекомендуется переключать передачи, маневрировать и останавливаться. Трогание автомобиля с места должно осуществляться плавно, без пробуксовывания колес. Сыпучий снег характеризуется очень малым коэффициентом внутреннего трения. В связи с этим преодоление участков глубокого сыпучего снега возможно только при специальных конструкциях колесных движителей, обеспечивающих давление на грунт не более 0,01 МПа. При движении по уплотняющемуся снегу проходимость автомобиля обеспечивается теми же способами, что и при движении по уплотняющимся грунтам. Особую трудность представляют для автомобилей заболоченные участки. Обычно преодоление таких участков возможно, если колеса автомобиля не прорезают верхний слой, связанный корнями растений. Поэтому при проезде таких участков давление от ходовой части на опорную поверхность должно быть минимальным, а окружное усилие на ведущих колесах — постоянным или плавно изменяющимся.

Опорно-сцепная проходимость автомобиля зависит от схемы и типа трансмиссии. Тип трансмиссии определяет плавность передачи крутящего момента от двигателя к ведущим колесам. С этой точки зрения наиболее неблагоприятной является механическая трансмиссия, при которой возможны разрывы потока мощности при переключении передач, резкие колебания и броски крутящего момента при тро-гании с места. Гидродинамические, гидрообъемные и электрические трансмиссии обеспечивают плавную передачу крутящего момента к ведущим колесам. Это способствует уменьшению динамических воздействий на грунт и тем самым повышению проходимости автомобиля. У автомобилей повышенной и высокой проходимости все колеса являются ведущими. В приводе к ведущим колесам обычно используют межколесные и межосевые дифферен­циалы. При наличии межколесного дифференциала максимальное окружное усилие, развиваемое колесами моста, ограничивается сцеплением коле­са, находящегося на поверхности с наименьшим коэффициентом сцепления. Допустим, что колеса ведущего моста автомобиля располагаются на поверхностях с коэффициентами сцепления. Тогда максимальное окружное усилие, развиваемое колеса. Таким образом, в замкнутом контуре (колеса заднего моста — главная передача и карданный вал заднего моста — вал раздаточной коробки — карданный вал переднего моста — главная передача и колеса переднего моста) все элементы, передающие крутящий момент, оказываются нагруженными дополнительным крутящим моментом. Появление дополнительного момента в замкнутом силовом контуре в технической литературе называют циркуляцией мощности: в контуре как бы появляется дополнительная мощность. Движение автомобиля при наличии циркуляции мощности сопровождается повышенным изнашиванием шин и механизмов трансмиссии, а также дополнительным сопротивлением движению автомобиля. Поэтому при движении автомобиля в легких условиях мощность должна подводиться только к одному мосту или в приводе устанавливаются дифференциальные механизмы, позволяющие колесам автомобиля катиться с различной угловой скоростью. Следует отметить, что циркуляция мощности может возникать не только при различных радиусах колес, но и когда колеса автомобиля за один и тот же промежуток времени проходят разный путь, например при движении по криволинейной траектории или по дороге с неровностями. В настоящее время еще нет единых методов оценки проходимости автомобилей. Наиболее часто она оценивается путем определения характеристик движения по эталонным маршрутам, а также путем сравнительной оценки способности автомобилей преодолевать труднопроходимые участки и отдельные препятствия.

Эталонный маршрут — это специальный маршрут, в который в зависимости от назначения автомобиля включают трудные для движения авто­мобиля участки: песчаные и заболоченные, броды, лесные и горные дороги, а также булыжные и грунтовые. Он включает также участки дорог с хорошим покрытием. При длительных испытаниях маршруты подбирают таким образом, чтобы они проходили по основным районам страны и включали все виды дорог. Оценку проходимости автомобиля проводят по производительности, средней скорости движения, расходу топлива. Дополнительными показателями могут быть число застреваний, средняя скорость прохождения особо трудных участков и др. Способность автомобиля преодолевать труднопроходимые участки можно оценить по тягово-скоростной характеристике при движении на заданном участке и зависимости мощности сопротивления качению от скорости движения. Тягово-скоростную характеристику определяют при движении по размокшей грунтовой дороге или связным грунтовым поверхностям, сыпучему песку и снежной целине. Для этого к испытываемому автомобилю присоединяется динамометрический прицеп, который позволяет регистрировать и плавно менять нагрузку на крюке испытываемого автомобиля. Для получения одной точки на кривой характеристики автомобиль с прицепом проезжает участок дороги или местности с полной подачей топлива при определенной ступени в коробке передач. Сила тяги, развиваемая автомобилем, и скорость движения фиксируются с помощью аппаратуры динамометрического прицепа. Изменяя сопротивление движению динамометрического прицепа, находят зависимость силы тяги автомобиля от его скорости. Мощность сопротивления качению определяется как разность мощности, подведенной к ведущим колесам, и мощности на крюке. Мощность, подведенная к ведущим колесам, находится как произведение крутящего момента на ведущих колесах на их угловую скорость. Мощность на крюке равна произведению силы тяги автомобиля на его скорость. Предельный уровень проходимости автомобиля находят путем испытаний его на особо труднопроходимых участках: по размокшей грунтовой поверх­ности (суглинок или чернозем), заболоченному лугу, снежному бездорожью. Все испытания автомобилей на проходимость являются сравнительными. Обычно проходимость испытываемого автомобиля сравнивается с известной из опыта эксплуатации проходимостью одного или группы автомобилей.

 


Дата добавления: 2018-05-13; просмотров: 1286; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!