ОСНОВНЫЕ СВЕДЕНИЯ О МЕТАЛЛАХ И СПЛАВАХ



Раздел первый ОСНОВЫ МЕТАЛЛОВЕДЕНИЯ

Глава I ОСНОВНЫЕ СВЕДЕНИЯ

О МЕТАЛЛАХ И ИХ СПЛАВАХ

Общие сведения о металлах и их сплавах

В настоящее время известно 107 химических элементов (см. Периодическую систему элементов Д. И. Менделеева), которые делятся на две основные группы: металлы и неметаллы (метал­лоиды). Большинство элементов (83) — металлы, отличитель­ными признаками которых являются непрозрачность, специфи­ческий блеск, высокая теплопроводность и электропроводность, ковкость и др. При обычной температуре все металлы, кроме ртути, находятся в твердом состоянии. Металлоиды не имеют таких свойств.

Перечисленными выше свойствами металлы обладают в раз­личной степени, что и определяет их различное практическое использование. Наиболее широкое применение в промышленно­сти получили железо, медь, алюминий, магний, свинец, цинк и олово.

В земной коре металлы занимают небольшое место (около 15% по массе), остальную часть составляют кислород (49%), кремний (26%) и другие металлоиды. Самыми распространен­ными металлами являются алюминий (7%) и железо (5%), реже встречаются кальций, натрий, магний и калий. Содержа­ние урана, золота, платины и других редких металлов опреде­ляется миллионными и миллиардными долями процента.

В технике слово «металлы» объединяет чистые металлы и сплавы. Чистыми металлами называют химические элементы обычно с небольшими добавками других элементов (примесей). Например, техническая медь содержит примеси свинца, вис­мута, сурьмы, железа, мышьяка, олова и других элементов.

Сплавы — это сложные материалы, образующиеся путем сое­динения двух и более элементов (в том числе и неметаллов).

Чистые металлы имеют заданные природой свойства. Спла­вам можно придать необходимые свойства, поэтому они и полу­чили наибольшее распространение.

В промышленности металлы обычно делят на две группы: черные и цветные. Черные металлы — это железо и его сплавы с углеродом (сталь и чугун). Цветные металлы — это медь, алюминий, магний, никель, цинк, олово, свинец и др. и их сплавы. Наиболее распространены черные металлы (на их долю приходится более 90% общей массы металлов). Из металлои­дов широко применяют углерод и кремний.

Металлы получают из металлических руд, которые пред­ставляют собой скопление химических элементов в виде про­стых веществ или соединений. Добычей руд из недр земли за­нимается горнодобывающая промышленность, получением ме­таллов и сплавов из руд — металлургическая. В соответствии с делением металлов на черные и цветные металлургия делится также на черную и цветную.

В настоящее время выплавляют около 75 металлов и огром­ное количество сплавов.

§ 2. Внутреннее строение металлов и их сплавов

Все вещества состоят из атомов, а атом — из положительно заряженного ядра и вращающихся вокруг него отрицательно заряженных электронов (рис. 1). В ядре находятся положи­тельно заряженные частицы — протоны. Количество протонов при обычном состоянии атома равно количеству электронов, т. е. атом электрически нейтрален. Число электронов, обозна­ченное порядковым номером в периодической системе элементов Д. И. Менделеева, для каждого элемента различно. Атом при определенных условиях может терять и приобретать электроны. Если электронов станет больше, чем протонов, то он будет за­ряжен отрицательно, а если меньше, то положительно. Такой электрически заряженный атом называется попом.

Электроны вращаются вокруг ядра по орбитам, число кото­рых определяется номером периода элемента в периодической, системе.

У металлов на внешней орбите находятся один, два или три электрона, слабо связанных с ядром, поэтому под воздействием положительно заряженных атомов они могут отрываться от своего атома, превращая его в положительно заряженный ион. Электроны, свободно переходящие от одного атома к другому, называются свободными.

Атомы металлоидов при определенных условиях стремятся заполнить внешнюю оболочку, т. е. присоединить электроны и превратиться в отрицательно заряженные ноны.

ОСНОВНЫЕ СВЕДЕНИЯ О МЕТАЛЛАХ И СПЛАВАХ

Используемые в технике металлические материалы разделяют на простые и сложные металлы (сплавы).

Простые металлы состоят из одного основного элемен­та и незначительного количества примесей других элемен­тов. Например, технически чистая медь содержит от 0,1 до 1 % примесей свинца, висмута, сурьмы и других эле­ментов.

Сплавы — это сложные металлы, представляющие со­четание какого-либо простого металла (основы сплава) с другими металлами или неметаллами. Например, ла­тунь — сплав меди с цинком. Здесь основу сплава состав­ляет медь.

Химический элемент, входящий в состав металла или сплава, называется компонентом. По числу компонентов сплавы делятся на двухкомпонентные (двойные), трех-компонентные (тройные) и т. д.

Большинство сплавов получают сплавлением компо­нентов в жидком состоянии.

Сплавы превосходят простые металлы по прочности, твердости, обрабатываемости и т. д. Вот почему они применяются в технике значительно шире простых метал­лов. Например, железо — мягкий металл, почти не при­меняющийся в чистом виде. Зато самое широкое приме­нение в технике имеют сплавы железа с углеродом — ста­ли и чугуны.

Все применяемые в технике металлы и сплавы делят ся на черные и цветные.

К черным металлам относятся железо и его сплавь (сталь и чугун). Все остальные металлы и сплавы состав представляют группу цветных металлов.

Наибольшее распространение в технике получили черные металлы. Это обусловлено большими запасами железных руд в земной коре, сравнительной простотой технологии выплавки черных металлов, их высокой прочностью.

Цветные металлы применяются в технике реже, чем черные. Это объясняется незначительным содержанием многих цветных металлов в земной коре, сложностью процесса их выплавки из руд, недостаточной проч­ностью. Цветные металлы дороже черных. Во всех слу­чаях, когда это возможно, их заменяют черными метал­лами, пластмассами и другими материалами.

Из большого числа цветных металлов и сплавов в сельскохозяйственной технике наибольшее распростра­нение получили сплавы алюминия, меди, а также под­шипниковые сплавы.

Все металлы и сплавы в твердом состоянии имеют

 кристаллическое строение, т. е. их атомы (ионы) распо­ложены в строго определенном порядке. Этим кристалли­ческие тела отличаются от аморфных тел, у которых атомы  расположены хаотично. Аморфными телами являются стекло, клей, воск и др.

 

Если атомы металла мысленно соединить прямыми линиями, то получится правильная геометрическая систе­ма, называемая пространственной кристаллической ре­шеткой. Из  кристаллической решетки можно выделить элементарную кристаллическую ячейку, представляющую комплекс атомов, повторением которого в трех измерениях можно построить всю решетку. Наибо­лее распространены три типа элементарных кристалли­ческих ячеек металлов (рис. 1): кубическая объемно-центрированная (такую решетку имеют хром, вольфрам, молибден и др.), кубическая гранецентрированная (алю­миний, медь, свинец и др.) и гексагональная (цинк, маг­ний и др.).

В узлах кристаллических решеток металлов располо­жены положительно заряженные ионы, удерживаемые на определенном расстоянии друг от друга свободными электронами. Такое внутреннее строение обусловливает характерные признаки металлов, такие, как высокая элек­тро- и теплопроводность, пластичность (ковкость) и др.

Свойства металлов и сплавов зависят от природы их атомов, типа кристаллической решетки и от расстояния между атомами в решетке.

Все свойства металлов делятся на физические, хими­ческие, механические и технологические.

Физические свойстваметаллов и сплавов определя­ются цветом, плотностью, температурой плавления, теп­ловым расширением, тепло- и электропроводностью, а также магнитными свойствами (табл. 1). Плотность металла — величина, определяемая отно­шением массы металла к занимаемому им объему. Она измеряется в кг/м3. Для снижения массы изделия необ­ходимо использовать материалы с небольшой плотностью (сплавы магния, алюминия и титана).

Температура плавления — температура, при которой металл переходит из твердого состояния в жидкое. Знание температуры плавления металлов и сплавов необхо­димо в металлургии, в литейном производстве, при горя­чей обработке металлов давлением, при сварке, пайке и других процессах, сопровождающихся нагреванием ме­таллических материалов.                   

 

Тепловое расширение - изменение линейных разме­ров иобъема металлического материала при нагревани. Неодинаковость величины теплового линейного расшире­ния материалов характеризуется коэффициентом линей­ного расширения а, который показывает, на какую долю первоначальной длины при 0 °С удлинилось тело вслед­ствие нагревания его на 1 °С. Тепловое расширение металлов необходимо учитывать при изготовлении и эксплуатации точных, сложностью приборов и инструментов, изготовлении литейных форм, Прокладке железнодорожных рельс и т. д.

Теплопроводность — способность металлов передавать' Теплоту от более нагретых частей тела к менее нагретым. Среди металлических материалов лучшей теплопровод­ностью обладают серебро, медь, алюминий.

Электропроводность — способность металлов прово­пить электрический ток. Она оценивается на практике Величиной удельного электросопротивления р. Чем мень­ше электросопротивление, тем более электропроводен металлический материал. Высокой электропроводностью Обладают те металлы, которые хорошо проводят электри­ческий ток (серебро, медь, алюминий). 

Способность металлов намагничиваться под действием магнитного поля/называют магнитной проницаемостью. Сильно выраженными магнитными свойствами обладают железо, никель, кобальт и их сплавы. Эти металлы назы­вают ферромагнитными


Механическими свойствамиметаллов называется со­вокупность свойств, характеризующих способность ме­таллических материалов сопротивляться воздействию внешних усилий (нагрузок).

К механическим свойствам металлов. относятся:

прочность — способность материала сопротивляться действий внешних сил без разрушения; упругость — способность материала восстанавливать свою первоначальную форму и размеры после прекраще­ния действия внешних сил, вызвавших деформацию;

пластичность — способность материала изменять свою форму и размеры под действием внешних сил, не разру­шаясь, и сохранять полученные деформации после пре­кращения действия внешних сил;

твердость — способность материала оказывать сопротивление проникновению в него другого, более твердого тела; 

вязкость — способность, металлических материалов оказывать сопротивление быстро возрастающим (ударным) нагрузкам; хрупкость — свойство, обратное вязко­сти;

1 ползучесть — свойство металлических материалов медленно и непрерывно пластически деформироваться при длительной нагрузке и высоких температурах; усталость — процесс постепенного накопления повреждений материала под действием повторно-переменных напряжений, приводящих к уменьшению долговечности, образованию трещин и разрушению. Способность метал­лических материалов противостоять усталости называет­ся выносливостью.

Механические свойства являются основной характери­стикой металлов и сплавов, поэтому на заводах созданы специальные лаборатории, где производятся различные испытания с целью определения этих свойств.

Механические испытания можно разделить на:

статические, при которых нагрузка, действующая на металлический образец или деталь, остается постоянной или возрастает крайне медленно;

динамические (ударные), при которых нагрузка воз­растает быстро и действует в течение незначительного времени;

испытание при повторных или знакопеременных на­грузках — нагрузках, изменяющихся многократно по ве­личине или по величине и направлению.

Рассмотрим основные виды испытаний металлов с целью определения их механических свойств.

Технологические свойства характеризуют способность металлов поддаваться различным видам технологической обработки для получения определенной формы, размеров и свойств: Они имеют большое значение при выборе металлических материалов для изготовления деталей ма­шин и конструкций. Из технологических свойств наиболь­шее значение имеют обрабатываемость резанием, свариваемость, ковкость, прокаливаемость, литейные свойства.

Обрабатываемостью резанием называется способность металлов подвергаться обработке режущими инструмен­тами для придания деталям определенной формы, разме­ров (с необходимой точностью) и чистоты поверхности.  Обрабатываемость резанием определяется по скорости резания, усилию резания и по шероховатости обрабатываемой поверхности. При разных методах обработки (то­чении, сверлении, фрезеровании и т. д.) обрабатывае­мость одного и того же металла может быть различной. Для улучшения обрабатываемости сталей в них допу­скается повышенное содержание серы, а также вводятся свинец, селен и другие элементы.

Свариваемостью называется свойство металла или сплава образовывать при установленной технологии сварки соединения, отвечающие требованиям, обусловленным конструкцией и эксплуатацией изделия. Свариваемость углеродистых сталей ухудшается с по-вышением содержания в них углерода. Ковкостью называется способность металла без раз­рушения поддаваться обработке давлением (ковке, штам­повке, прокатке и т. д.). Ковкость металла зависит от его пластичности. Чем металл более пластичен, тем лучше он поддается обработке давлением.

Металлы обладают ковкостью как в холодном, так и в нагретом состоянии. В холодном состоянии хорошо ку­ются латуни и сплавы алюминия, сталь — в нагретом • состоянии. Чугун из-за повышенной хрупкости обработке давлением не подвергается.

Прокаливаемость— способность стали воспринимать закалку на определенную глубину от поверхности. Про­каливаемость стали определяется по виду излома, по измерению твердости в различных точках сечения образ­ца, а также методом торцовой закалки.

 Литейные свойства металлов определяются жидкоте-кучестью, усадкой и склонностью к ликвации. Жидкоте кучесть — это способность расплавленного металла за­полнять форму и давать плотные отливки с точной конфи­гурацией. Усадка — сокращение объема расплавленного металла при затвердении и последующем охлаждении. Ликвация — неоднородность химического состава твердо­го металла в разных частях отливки. .

При выборе литейных материалов учитывают, что чу­гун обладает высокими литейными свойствами: хорошей жидкотекучестью, небольшой усадкой и незначительной склонностью к ликвации. Литейные свойства стали хуже, чем чугуна.


Химические свойства металлов

Химическим свойством называется способность металлов под действием окружающей среды превращаться в другие вещества и изменять свои свойства.

К химическим свойствам относится способность металлов корродировать, т. е. окисляться под действием кислорода воз­духа и воды, разрушаться под действием кислот и щелочей, об­разовывать окалину при нагреве в окислительной среде.

Коррозии(лат. corrosia — разъедание) подвергаются почти все металлы. Например, железо на воздухе ржавеет, медь по­крывается зеленым слоем окиси, алюминий — белым слоем окиси и т. д.

Металлы, не поддающиеся коррозии, называются благород­ными. К ним относятся золото и платина. Они разрушаются только в смеси соляной и азотной кислот, называемой «царской водкой».

Высокой коррозионной стойкостью обладают хром, никель и их сплавы, а титан и его сплавы по коррозионной стойкости приближаются к благородным металлам.

[Химическая коррозия возникает вследствие химического взаимодействия металла со средами, не являющимися провод­никами электрического тока (сухие газы, нефть, бензин, керо-син, масла). При этом металлы вступают в химическое взаимо­действие с активными веществами внешней среды, обычно с кислородом, в результате чего на поверхности металлов по­являются окисные пленки и изделие начинает разрушаться.

Типичным примером химической коррозии является газовая коррозия, которая наблюдается при нагреве заготовок для ковки и термической обработки, деталей топок и дымоходов котлов, проточных частей газовых турбин, выхлопных труб дви­гателей и т. д. На судах химической коррозии подвергаются внутренние поверхности цистерн с керосином или бензином, танки с нефтью и другими подобными продуктами.

Электрохимическая коррозия возникает при взаимодействии металла с электролитом, т. е. со средами, проводящими элект­рический ток (щелочи, растворы солей и кислот, вода и воздух). Коррозию металлов в атмосфере воздуха обычно называют ржавлением.

Явления при электрохимической коррозии по своей природе не отличаются от тех, которые происходят в гальванических элементах. Известно, что при работе гальванического элемента положительно заряженные ионы анода переходят в раствор." При этом анод заряжается отрицательно, а раствор (электролит), приобретая эти ионы, заряжается положительно. Таким образом, возникает разность потенциалов. Чем она больше, тем быстрее переходят ионы с анода в раствор и, следовательно, тем быстрее анод разрушается.

Разность потенциалов, возникающая на поверхности ме­талла, соприкасающегося с электролитом, называется электрод­ным потенциалом. Значения электродных потенциалов элемен­тов измеряют по отношению к водороду, потенциал которого принят равным нулю (табл. 4). Металлы, расположенные выше водорода, электроположительны, а ниже — электроотрица­тельны.

Если построить гальванический элемент из двух разнород­ных металлов, то разрушаться будет тот, который в таблице расположен ниже. Так, если в электролит поместить пластинки цинка и железа, то разрушаться будет цинк. Каждый металл будет анодом по отношению к металлу, расположенному выше него в таблице, и катодом — ко всем нижерасположенным. Поэтому нельзя допускать в конструкциях, работающих в корро­зионных средах, соединения металлов, разных по активности, например железа с алюминием или медью, меди с алюминием. Возникновению коррозии на металле способствует неодно­родность их строения, наличие загрязнений и примесей.

Металлические изделия подвергаются коррозии как в процессе эксплуатации, так и хранения.

 

По характеру воздействия на металл коррозию можно раз­делить на сплошную (равномерную), местную и межкристаллитиую.

 

Сплошная (равномерная) коррозия равномерно распространяется по всей поверхности металла.

Местная коррозия вызывает разрушение отдельных участков поверхности металла в виде язв, пятен и точек. По­этому ее иногда называют язвенной, пятнистой, точечной. Она возникает обычно в местах дефектов металла: царапин, рисок, забоин, следов обработки и т. д.

Межкристалли тная  коррозия развивается (воз­никает) по границам кристаллов, не вызывая заметных измене­ний поверхности металла. Этот вид коррозии наиболее опасный. Он приводит к мгновенной поломке деталей при эксплуатации

Интенсивность (скорость) коррозии зависит от химического состава и структуры металла, состояния его поверхности, наличия внутренних и наружных дефектов, окружающей среды (ее состава, температуры, скорости движения) и т. д. Металл с де­фектами имеет более высокий электродный потенциал, чем чи­стый. Дефекты способствуют образованию гальванических мик­роэлементов и, следовательно, разрушению основного металла. Чем меньше металл имеет дефектов, тем выше его коррозион­ная стойкость, и наоборот.Химический состав металла значительно влияет на его кор­розионную стойкость. При увеличении содержания углерода со­противляемость металла коррозии уменьшается, и наоборот. Содержание в металлах таких элементов, как хром, никель, ти­тан, медь, повышает их коррозионную стойкость. Ниобий и ти­тан повышают стойкость металлов к межкристаллитной корро­зии. Коррозия стали усиливается в кислых растворах и умень­шается в щелочных средах.

Часто одновременно с коррозией металлов происходит эрозия. Эрозией называется механическое разрушение поверхности металла ударами частиц твердых тел, воды, газа, пара, воздуха и т. д. Совместная коррозия и эрозия значительно быстрее раз­рушают металл.        

Около 10 % всех наплавленных металлов, воплощенных в различные изделия, конструкции и машины, ежегодно разру­шается от коррозии. Поэтому борьба с коррозией является важнейшей народнохозяйственной задачей. Знание химических свойств металлов позволяет правильно выбрать нужный для из­готовления изделий или конструкций, работающих в коррозион­ных средах.

Коррозия судовых конструкций

Судовые конструкции работают в чрезвычайно неблагоприятных условиях. Детали двигателей внутреннего сгорания и газовых турбин, топки и дымоходы паровых котлов, нагревае­мые при обработке судостроительные заготовки подвергаются газовой коррозии, судовые конструкции, соприкасающиеся с нефтью, бензином, керосином, маслами,— химической корро­зии, судовые конструкции, находящиеся в воде и влажной ат­мосфере,— электрохимической коррозии. Многие судовые кон­струкции (корпус судна, гребные винты, рули, вращающиеся детали турбин и насосов, трубы большинства судовых систем и т. д.) подвергаются также эрозии. В результате потери ме­талла от коррозии в судостроении довольно высоки.

Основной коррозионной средой судовых конструкций явля­ется морская вода, в которой содержатся растворы различных солей. Соленость океанов составляет примерно 35 промилле, морей — не более 25, рек и озер — не более 0,3 промилле. Чем выше концентрация солей в воде, тем выше электропроводность и, следовательно, тем выше ее коррозионная активность. Рас­творенные в морской воде кислород, йод, бром также способ­ствуют ее коррозионной активности.

Наиболее подвержены коррозии в морской воде углероди­стая сталь и чугун. Чем больше примесей (серы и фосфора) содержит металл, тем ниже его коррозионная стойкость. Нержа­веющие стали и особенно сплавы на основе титана, циркония и тантала устойчивы против коррозии.

Коррозионная стойкость цветных металлов колеблется в ши­роких пределах. Высокую коррозионную стойкость имеет медь и ее сплавы (латунь и бронза). Но простые латуни подвержены в морской воде обесцинкованию. Обесцинкование — это вид из­бирательной коррозии, при которой цинк растворяется, а медь выделяется на поверхности в виде рыхлых образований.

Алюминий и его сплавы устойчивы против коррозии в прес­ной воде, а сплавы алюминия с магнием устойчивы и в морской воде, если они имеют дополнительную защиту. Магний и его сплавы мало устойчивы против коррозии в морской воде, а ти­тан и его сплавы — практически абсолютно устойчивы против коррозии, поэтому являются ценным материалом для изготов-ления судовых конструкций.

Увеличение скорости движения воды повышает электрохими­ческую коррозию, а при определенных условиях вызывает кор­розионную эрозию, прежде всего судовых конструкций в кормо­вой части корпуса судна: гребных винтов, внутренних поверх­ностей судовых трубопроводов и др.

Коррозионная стойкость судовых конструкций зависит в зна­чительной степени от чистоты их обработки. Бугорчатая поверх­ность сварных швов, выступающие головки заклепок и других крепежных деталей могут быть причинами интенсивной местной коррозии. Ускоряет коррозию наличие окалины на поверхности судовых конструкций, даже находящейся под слоем краски.

Особенно интенсивно происходит электрохимическая корро­зия конструкций, в которых сочетаются различные металлы, например сталь с алюминиевыми или медными сплавами. Од­нако при постройке судов без таких материалов невозможно обойтись.

Подводная часть судов (обычно до грузовой ватерлинии) во время плавания и особенно стоянки обрастает различными жи­вотными или растительными организмами, которые повреждают покрытие корпуса судна, что способствует возникновению мест­ной коррозии. В процессе жизнедеятельности эти организмы вы­деляют вредные химические соединения: сернистый водород, уг­лекислый газ, различные кислоты и кислород, что также спо­собствует повышению скорости коррозии.

При очистке подводной части крупнотоннажных судов в до­ках снимают до 200 т продуктов обрастания, которое не только способствует возникновению коррозии, но и снижению скорости движения судов, увеличению расхода топлива, ускорению сро­ков докования.


Дата добавления: 2018-04-05; просмотров: 7684; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!