Аналитический способ расчета плоских статически определимых ферм на неподвижную нагрузку



Задачей расчета является определение опорных реакций и усилий в стержнях фермы. Напомним, что силы к ферме должны быть приложены в узлах. В этом случае стержни работают исключительно на продольные усилия. Расчет фермы следует начинать с определения опорных реакций.

Порядок определения опорных реакций рассмотрим на примере треугольной стропильной фермы (рис. 3.35).

Наклонный груз РI разложим на составляющие

                           PX = РI ·Cos α;                                                                     (3.24)

                           PY = РI ·Sin α.                                                                       (3.25)

Рис. 3.35. Плоская статически определимая ферма с неподвижной

системой внешних сил

 

Левая опорная реакция RАV имеет две составляющих: вертикальную RАV и горизонтальную RАH. Для определения первой составляющей составим уравнение равновесия моментов всех сил, приложенных к ферме, относительно точки В.                   ∑МВ = 0;

RАV · L + PX · H - PY · 5d - P2 ·4d - P3 2d = 0.

Отсюда RАV = (- PX · H + PY · 5d + P2 ·4d + P3 · 2d)/L.                                (3.26)                                      

Вторая составляющая определится из уравнения проекции всех сил на горизонтальную ось X

∑X = 0 ;  RАH + PX = 0;                                                       

RАH = - PX = - P1·Cos α.

Если в результате вычислений окажется, что правая часть уравнения (3.26) имеет знак минус, то в действительности составляющая опорной реакции направлена в противоположную сторону против принятой в расчетной схеме (рис. 3.35). Это следует иметь в виду при дальнейших расчетах как по определению опорных реакций, так и усилий в стержнях.    

Опорная реакция RВ имеет только одну составляющую - вертикальную. Величину RВ найдем, составив и решив уравнение:

                                    ∑МА = 0.

После определения величин опорных реакций необходимо проверить правильность вычислений с помощью уравнений

                                     ∑Х = 0; ∑Y = 0.

Рассмотрим порядок определения усилий в стержнях на примере фермы с ломаным верхним поясом (рис. 3.36).

Рис. 3.36. Расчет усилий в стержнях фермы от неподвижной заданной нагрузки

 

Прежде чем приступить непосредственно к определению усилий в стержнях, необходимо проверить ферму на неизменяемость и статическую определимость, а также вычислить опорные реакции.

Усилия в стержнях фермы определяют методом «сечений». При этом рекомендуется определять усилия в каждом стержне независимо от ранее найденных величин усилий в других стержнях, что позволяет избежать нарастания возможных ошибок при расчетах.

При использовании метода «вырезанием узлов» ошибка в расчетах предыдущего стержня автоматически будет переходить в последующие стержни.

Порядок расчетов по методу сечений:

а) разрезаем ферму; разрез должен проходить не более чем через три стержня, в том числе и через стержень, усилие в котором требуется определить;

б) отбрасываем часть фермы (к которой приложено больше нагрузок);

в) заменяем действие отброшенной части фермы усилиями в разрезанных стержнях; при этом полагаем, что усилия в стержнях растягивающие, т.е. направленные от узла;

г) составляем такое уравнение статики, чтобы только искомое усилие входило в него в качестве единственного неизвестного;

д) решаем уравнение и находим искомое усилие; если результат будет со знаком плюс, то стержень действительно растянут, если со знаком минус, то стержень сжат.

Рассмотрим метод на примере фермы (рис. 3.36). Ферма статически определима и геометрически неизменяема. Индексы стержня и усилия в нем примем одинаковыми, например, O3-4  - это усилие в стержне O3-4  .

Требуется от заданной нагрузки определить величины усилий

O3-4; U16-17; D3-17; D4-16; V4-17; V6-15.

Усилие O3-4 . Проведем разрез I-I, он проходит через три стержня, включая стержень O3-4 (рис. 3.36 а). Отбросим правую часть фермы, заменив ее действие усилиями в разрезанных стержнях O3-4 , V4-17, U16-17 , предполагая, что они растягивающие (рис. 3. 36 б). Эти усилия неизвестны. Рассмотрим равновесие левой части фермы. Уравнение равновесия нужно составить так, чтобы в него вошло неизвестное усилие O3-4, но не вошли усилия V4-17 U16-17 . Очевидно, этому условию удовлетворяет уравнение - сумма моментов всех сил, приложенных к левой части фермы, относительно точки 17, находящейся на пересечении стержней V4-17  и U16-17.

М17 = 0.

Получим (величины RАV и RАH предварительно определены)

O3-4· r17 + RАV· 2d - P2 · d = 0.

Отсюда

O3-4 = (P2 · d - RАV· 2d)/ r17.  

Если в результате вычислений получили, что правая часть уравнения отрицатель­ная, то это значит, что стержень O3-4 в действительности не растянут (как предположили в расчетной схеме), а сжат.

При определении усилий в стержнях фермы иногда приходится пользоваться величинами ранее найденных усилий в других стержнях. В этом случае рекомендуется сохранить принятую расчетную схему неизменной, в которой усилия в разрезанных стержнях показаны растягивающими. И только в вычислениях учитывать действительный знак величины ранее найденного усилия. Если стержень в действительности сжат, а не растянут, то при вы­числениях величина усилия встержне должна фигурировать со зна­ком минус. Если мы откорректируем расчетную схему, поменяв нап­равление действий усилия в сжатом стержне на противоположное принятому, то возможна путаница со знаками величин в дальнейших расчетах.  

Усилие U16-17. Для определения U16-17 воспользуемся тем жеразрезом I-I (рис. 3.36 а). Величину и знак усилия опреде­лим из уравнения

                                                  ∑М4 = 0.

Получим - U16-17 ·h + RАV· 2d + RАH·h - P2 · d = 0.

 

U16-17 = (RАV· 2d + RАH·h - P2 · d)/h.                                                                (3.28)

Стержень растянут.

Усилие V4-17 . Величину и знак усилия определим из уравнения ∑МК = 0.

Моментная точка «К» находится на пересечении стержней O3-4 и U16-17 за пределами фермы.

Получим - V4-17· ( а + 2d) - RАV· а + P2 · (а + d) = 0.

                        

V4-17 = [P2 · (а + d) - RАV· а]/ ( а + 2d).                                                          (3.29)

 

Знак усилия V4-17 определится по результатам вычислений.

Усилие D3-17. Проводим разрез II- II, проходящий через стержень D3-17 и два других стержня (рис. 2.36 а). Отбросим правую часть фермы, заменим опять действие отброшенной части усилиями в разрезанных стержнях и рассмотрим равновесие оставшейся левой части фермы (рис. 2.36 в).

Величину и знак усилия определим из уравнения ∑МК = 0.

Получим D3-17 · rК - RАV· а + Р2 · (а + d) = 0.

                                     D3-17 = [RАV· а - Р2 · (а + d)]/ rК.                                 (3.30)

Усилие D4-16. Проводим разрез III-III (рис. 2.36 а), отбросим правую часть фермы и рассмотрим равновесие левой. Величину и знак усилия определим из уравнения равновесия - сумма проекций всех сил, приложенных к рассматриваемой части фермы, на вертикальную ось Y  (рис. 2.36 г), равна нулю: ∑Y = 0.

Получим: - D4-16 · Cos α + RАV - P2 = 0;

        D4-16 = (RАV - P2)/ Cos α.                                                                          (3.31)

Усилие V6-15. Проводим разрез IV-IV, начинающийся и окан­чивающийся с одной стороны фермы, т.е. вырезаем узел 15 (рис. 3.36 а). Рассмотрим равновесие вырезанного узла (рис.2.36 д). Величину и знак усилия определим из уравнения

∑Y = 0.

Получим     + V6-15 - P4 = 0;        V6-15 = P4.                                                               (3.32)

Стержень растянут.

Нетрудно видеть, что если бы к узлу 15 не была приложена сила P4 , усилие

V6-15 равнялось бы нулю. Такие стержни, работающие исключительно на местную нагрузку, представляют особую группу стержней фермы (признаки таких неработающих «нулевых» стержней приведены на рис. 3.39 – 3.41.

Дополнительные сведения по определению усилий в стержнях ферм.

В некоторых случаях не удается составить уравнение, в которое входит, только одно неизвестное. Так, например, для опреде­ления усилия в средней стойке V4-10 фермы (рис 3.37) необходимо вырезать узел 4 и определить величину усилия с помощью уравнения                      ∑Y = 0,

получим - V4-10 - О3-4 · Cos α - О4-5 · Cos α 2 = 0,

тогда V4-10 = - (О3-4 · Cos α + О4-5 · Cos α +Р2).                                          (3.33)

          Рис. 3.37. Анализ усилий в стержнях методом вырезания узла

 

Очевидно, величину усилия можно определить лишь после того, как будут найдены усилия О3-4 и О4-5 (здесь вследствие сим­метрии О3-4 = О4-5 ).

Выше было указано, что разрез фермы должен проходить, как правило, не более чем через три стержня. Однако в некоторых случаях разрез может проходить и более чем через три стержня. Например, для определения усилия в стержне О3-4  (рис. 3.38) разрез I-I через четыре стержня допустим, так как три из них пересекаются в одной точке. К этому можно добавить, что разрезать более трех стержней допустимо и тогда, когда усилия в некоторых стержнях уже определены.

                                                         Рис. 3.38. Определение усилия в стержне О3-4  при                                                                      разрезе через 4-е стержня

 

В фермах при заданной нагрузке некоторые стержни не работают и усилия в них, естественно, равны нулю. Перед расчетом их целесообразно отыскать, и тем самым упростить определение усилий в остальных стержнях.

Признаки неработающих, так называемых, «нулевых» стержней (рис. 3.39):

а) если в узле фермы сходятся два стержня, не лежащих на одной прямой, и к узлу не приложена нагрузка, то усилия в этих стержнях равны нулю (N1 = N 2  = 0) (рис. 3.39 а);

б) если в узле фермы сходятся два стержня, не лежащие на одной прямой, и к узлу приложена нагрузка Р , действующая по направлению одного из них, то усилие во втором стержне равно нулю (N 2  = 0) (рис. 3.39 б);

в) если в узле фермы сходятся три стержня, два из которых лежат на одной прямой, и к узлу не приложена нагрузка, то усилие в третьем стержне (одиночном) равно нулю (N3  = 0) (рис. 3.39 в).

 

 

Рис. 3.39. Признаки неработающих стержней

 

Используем рассмотренные признаки для анализа фермы, показанной на рис. 3.40, при определении «нулевых» стержней.

Рис. 3.40. Плоская ферма с параллельными поясами: а - исходная структура;     б - упрощенная структура с удалением неработающих (нулевых) стержней               

 Узел 2. Усилия в обоих стержнях, сходящихся в узле, равны нулю; O2-3 =0, V1-2 =0.

Узел 10. Усилие в одиночном стержне равно нулю; V3-10 =0.

Узел 9. Усилие в одиночном стержне равно нулю V4-9 =0.

Узел 3. Если V3-10 =0, то это равнозначно, что стержень 3-10 отсутствует. Следовательно, стержень 1-3 оказывается одиночным и усилие в нем равно нулю: D1-3 = 0.

Узел 3. Если из четырех стержней, сходящихся в узле, в трех усилия равны нулю, то и в четвертом усилие равно нулю; O3-4 =0.

На рис. 3.40 а двойным штрихом показаны неработающие стержни фермы.

Таким образом, из всей фермы при данной нагрузке работают только стержни, показанные на рис. 2.40 б.

Предлагается самостоятельно определить «нулевые» стержни в фермах, показанных на рис. 3.41.

Рис. 3.41. Примеры ферм для выявления неработающих стержней: а, б – схемы ферм;  в, г – работающие стержни (нулевые условно удалены)

Трехшарнирные арочные фермы

Некоторые типы конструкций трехшарнирных арочных ферм представлены на рис. 3.42. В фермах этого типа шарниров в действительности не три, как мы видим, а гораздо больше. Термин «трехшарнирная» принят условно. Подразумевается при этом, что речь идет о двух опорных шарнирах А и В и среднем шарнире Св пролете. Такая конструкция предопределяет отличие трехшарнирных ферм похарактеру работы от «традиционных» ферм балочного типа.

Трехшарнирные фермы, как и трехшарнирные арки, являются распорными системами, их опорные реакции наклонны при вертикальной нагрузке. Иначе говоря, при вертикальной нагрузке опорные реакции трехшарнирных ферм имеют каквертикальные, так и горизонтальные составляющие - распоры. (Вфермах балочного типа при вертикальной нагрузке опорные реакции имеют только вертикальные составляющие).     

Рис. 3.42. Примеры трехшарнирных арочных ферм

 

Трехшарнирные фермы соединяют в себе свойства арок и ферм,. поэтому с их помощью можно перекрывать большие пролеты без воз­ведения промежуточных опор. Они нашли широкое применение при возведении мостов, строительстве ангаров, павильонов, выставочных залов и спортивных сооружений. По внешнему виду трехшарнирные фермы легки и изящны. В некоторых сооружениях несущие металлические конструкции с использованием трехшарнирных ферм намеренно не декорируют, оставляя их открытыми для обозрения. При удачном конструктивном решении и тщательном исполнении в этих случаях трехшарнирные фермы (так же, как и арки) составляет эстетическую канву всего сооружения, придавая ему воздушность и изящество.

Определенным недостатком трехшарнирных арок является необходимость возведенияотносительно мощных и тяжелых опорных частей. Поэтому для облегчения опор, если позволяют габариты, трехшарнирные арочные фермы устраивают с затяжками (рис. 3.42 г).

Как правило, стержни трехшарнирных арочных ферм делают пря­молинейными. Аналитический способ расчета трехшарнирных ферм рассмотрим на примере (рис. 3.43 а).

Предварительно проведем анализ на неизменяемость и статическую определимость. Первое необходимое условие неизменяемости как арок, так и ферм, выражается уравнением (3.23): 2У = СФ + СОП

Для арки по  рис. 3.43: 2·17 = 30 + 4.

Это условие выполняется. Как известно, выполнение указанного ус­ловия является одновременно признаком статической определимости фермы. Выполнение второго необходимого условия неизменяемости в нашем случаецелесообразно установить следующим образом. В ферме (рис. 3.43 а), выделим диски - фермы простого образования АС и СВ. Совместно с диском «земля» общее количество дисков в рассматриваемой системе равно трем.Эти три диска соединяются тремя шарнирами - А, В и С (А и В - условные шарниры). Следовательно, правило соединения трех дисков в единую неизменяемую систему выполнено.

Рис. 3.43. Схема к расчету трехшарнирной арочной фермы

Делаем заключение, что ферма,представленная на рис. 3.43 а, геометрически неизменяема и статически определима.

Расчет начнем с определения опорных реакций. Для определе­ния вертикальной составляющей левой опорной реакции RAV  приравняем нулю сумму моментов всех сил, приложенных к ферме, относительно точки В ∑МВ = 0;

                    RAV· L - P1 · b1 - P2 · b2 - … - P6 · b6 = 0,

отсюда

                    RAV = (P1 · b1 + P2 · b2 + … + P6 · b6)/L = ∑МВ /L.

Приравнивая нулю сумму моментов всех сил, приложенных к ферме, относительно точки А, найдём вертикальную составляющую RBV правой опорной реакции.

 

         RВV = (P1 · a1 + P2 · a2 + … + P6 · a6)/L = ∑МA /L = ∑МA /L.

Можно сделать проверку, приравняв нулю сумму проекций всех сил (включая теперь RAV и RВV )на вертикальную ось: ∑Y = 0.

  Горизонтальную составляющую левой опорной реакции RAH найдем, используя условие, что сумма моментов всех сил, расположенных слева от среднего шарнира С, относительно этого шарнира равна нулю

RAV· Lа - Р1 (Lа - а1) - Р2 (Lа - а2) - Р3 (Lа - а3) - RAH · f = 0;

RAH = [RAV· Lа - Р1 (Lа - а1) - Р2 (Lа - а2) - Р3 (Lа - а3)] /f.

 

Нетрудно видеть, что числитель здесь представляет собой величину изгибающего момента для простой балки на двух опорах, того же пролета, под той же нагрузкой в сечении C под средним шарниром (рис, 3.43 б). Обозначив величину этого изгибающего момента через МС0, запишем

          МС0 = RAV· Lа - Р1 (Lа - а1) - Р2 (Lа - а2) - Р3 (Lа - а3).

Тогда

            RAH = МС0 / f.                                                                                 (3.36) 

Горизонтальная составляющая правой опорной реакции RВH равна также

                               RВH = МС0/ f.

Следовательно, горизонтальные составляющие опорных реакций правой и левой равны по величине RAH = RВH = Н .

В статике сооружений их принято называть распором и обозначать индексом «Н».

Усилия в стержнях определяются как для обычной балочной фермы.

_Усилие_03-4. Проведем разрез I-I (рис. 3.43 а), отбросим правую часть фермы, заменим ее действие усилиями в разрезанных стержнях, полагая, что они растянуты, и рассмотрим равновесие левой части фермы (рис.3.44 а).

Моментная точка 13 находится на пересечении двух остальных разрезанных стержней. Искомое усилие О3-4 определим из уравнения

                     ∑М13 = 0,

выражающего условие, что момент всех сил, действующих на левую часть фермы относительно моментной точки 13, равен нулю. Раскроем уравнение

                  О3-4· r1 + RAV·x1 - P1 · r2 - H · y1 = 0,

отсюда О3-4 = (RAV·x1 - P1 · r2 - H · y1)/r1 .

 

Рис. 3.44. Схема к расчету усилий в стержнях фермы

 

Усилие D 3-13. Воспользуемся тем же разрезом I-I. Моментная точка КI находится на пересечении стержней 3-4 и 12-13.Составляем уравнение равновесия ∑МK1 = 0

D3-13 · r3 + RAV·x2 - P1 · r4 - H · y2 = 0,

отсюда D3-13 = (RAV·x2 - P1 · r4 - H · y2) /r3.

Усилие U12-13.Воспользуемся еще раз разрезом I-I. Моментная точка 3 находится на пересечении стержней 3-4 и 3-13. Искомое усилиеопределим из уравнения ∑М3 = 0. Прежде чем записать это уравнение в развернутом виде, необходимо, как мы видели выше, найти плечи всех сил, действующих на рассматриваемую левую часть фермы, относительно моментной точки 3. На рис. 3.44 а они не показаны. Предлагается это сделать самостоятельно. Напоминаем, что плечом силы относительно выбранной моментной точки является величина перпендикуляра, опущенного из моментной точки налинию действия данной силы.

Усилие О5-6.Проведем разрез П-П (рис. 3.43 а). Отбросим правую часть фермы, заменим ее действие усилиями в разрезанных стержнях, полагая их растянутыми (направление усилий в стержнях от узлов), и рассмотрим равновесие левой части фермы (рис. 3.44 б). Искомое усилие О5-6определим из уравнения    

                                                            ∑М14 = 0;

                             О5-6 · r5 + RAV·x3 - P1 · r6 - P2 · r7 - H · y3 = 0.

Отсюда

                      О5-6 =  (RAV·x3 - P1 · r6 - P2 · r7 - H · y3) /r5.

 

Усилие U6-14. Воспользуемся тем же разрезом П-П. Искомое усилие U6-14 можно определить из уравнения ∑М5 = 0.

Предлагаем составить и записать это уравнение в развернутом виде самостоятельно, предварительно определив плечи сил.

Усилие V7-15. Вырежем узел 7 (рис. 3.43 а). Рассмотрим равновесие вырезанного узла 7 (рис. 3.44 в). Искомое усилие определим из уравнения ∑γ = 0, выражающего условие, что сумма проекций усилий в стержнях фермы, сходящихся в узле 7, на ось γ, перпендикулярную линии действия усилий О6-7 и

О 7-8, равна нулю.

V7-15 · Cos β - P4 · Cos β = 0.

Отсюда V7-15 = - P4. Стержень V7-15 сжат.

Усилие U1-12.  Проведем разрез IV - IV (рис. 3.43 а). Рассмотрим равновесие левой части фермы (рис. 3.44 г). Искомое усилие определится из уравнения

                                                 ∑Х = 0;

                    + U1-12  · Cos σ + Н = 0.

Отсюда U1-12  = - Н/ Cos σ. Стержень U1-12  сжат.

Усилие О1-2. Воспользуемся тем же разрезом IV-IV. Искомое усилие О1-2 определится из уравнения ∑Y = 0;

+ О1-2  + RAV + U1-12 · Sin σ = 0.

Отсюда О1-2  = - (RAV + U1-12 · Sin σ) = Н · tg σ - RAV.

Если величина правой части уравнения будет иметь знак минус, стержень О1-2  сжат, если знак плюс - растянут.

Подобным образом можно определить усилия во всех остальных стержнях рассмотренной трехшарнирной арки.

 

3.4.5. Перемещения в статически определимых фермах

Если к ферме приложить внешнюю нагрузку, то она изменит свою форму и размеры. Это происходит вследствие того, что стержни ферм упруго деформируются под действием продольных усилий. При этом растянутые стержни удлиняются, сжатые - укорачивается. Упругая деформация несущих конструкций, в том числе и ферм, под действием внешней нагрузки - это неизбежное нормальное явление. При проектировании обращают внимание на главный компонент дефор­мации фермы под нагрузкой - прогиб (f) посредине пролета. Дело в том, что жесткость несущих конструкций, в том числе и ферм, ко­торую оценивают показателем f / L , где L - пролет является очень важной эксплуатационной характеристикой. Для ферм разного назначения норма жесткости находится в пределах 1/300 - 1/750. Величина жесткости должна бытьоптимальной. Например, если ферма имеет малую жесткость f / L > 1/200, то она вследствие большого прогиба под нагрузкой может оказаться непригодной к использованию, даже если условия прочности выполнены.

Рассмотрим способ аналитического определения прогиба фермы (pиc.3.45). Статически определимая ферма пролетом 4 метра нагружена в узле 2 одной сосредоточенной силой Р = 10 т. Материал, из которой изготовлена ферма, - сталь, имеющая величину модуля упругости Е-=2,1·106 кг/см2.  Требуется аналитически определить прогиб посредине пролета f, т.е. вертикальное перемещение узла 4. Результаты вычислений приведены в табл. 3.1.

Рис. 3.45. К расчету перемещений фермы: а - схема нагружения заданной нагрузкой;     б - схема нагружения фиктивной единичной нагрузкой в узле 4, премещение которого требуется определить

 

Перемещения узлов фермы определяются по формуле:

                        ХР = ∑ (NX · NP · Li) / (E · Fi),                                            (3.37)

где ХР - искомое перемещение, см;

NX - усилие в стержне фермы от действия фиктивной единичной силы X = 1, приложенной к ферме в искомом узле по искомому направлению; в нашем примере еди­ничную силу прикладываем в узле 4 вертикально вниз (рис. 3.45 б).

NP - усилие в стержне фермы от заданной нагрузки, в на­шем примере от

Р = 10 т ;

Li - длина i -го стержня, см;

E - модуль упругости материала фермы, в нашем случае E = 2,1· 106 кг/см2;

Fi - площадь поперечного сечения i -го стержня, см.

Приступим к расчету. Сначала определим опорные реакции и усилия в стержнях фермы от действия заданной силы Р = 10 т (рис.3.45 а).

Опорные реакции. Вследствие полной симметрии опорные реакции одинаковы и равны   RAP = RBP = 5 т = 5000 кГ.

Усилие O1-2. Вырежем узел 1 и рассмотрим его равновесие (рис.3.46 а).       

 ∑Y = 0:        + RA + O1-2 · Sin α = 0.

Отсюда O1-2 = - RAP / Sin 45º = - 5000/ 0,707 = - 7072 кГ.

Вследствие симметрии O2-3 = - 7072 кГ.

Усилие U1-4P. Также используем условие равновесия узла I: ∑X = 0:

                        + U1-4P + O1-2P · Cos 45º = 0.

Отсюда U1-4P = - O1-2P · Cos 45º = -( -7072) · 0,707 = + 5000 кГ.

Вследствие симметрии U3-4 = + 5000 кГ.

Усилие V2-4P. Вырежем узел 4. Рассматривая систему стержней, сходящихся в узле, можно без труда обнаружить, что стержень 2-4 подпадает под признак «нулевого». Напоминаем формулировку этого признака: если в узле сходятся три стержня, два из них расположены по одной прямой, и к узлу не приложена нагрузка, то усилие в третьем стержне равно нулю. Следовательно, усилие

V2-4P = 0.

Заметим, что величину усилия в стержне 1-2 можно установить, рассматривая равновесие узла 4, составив и решив уравнение статики: ∑Х = 0.

Определим усилия в стержнях фермы от действия единичной силы Хˉ = 1 (рис. 3.46 б).

Рис. 3.46. Определение усилий в стержнях узла 1 (а) и узла 4 (б)

 

Значения усилий в стержнях фермы (кроме усилия V 2-4Х   в стержне 2-4)от действия силы Хˉ = 1 можно определить, не прибегая к специальным расчетам, из численного отношения величин Р и Хˉ = 1.                                                                                                            Усилие V2-4X.  Вырежем и рассмотрим равновесие узла 4 (рис. 3.46 б). Так как сила

Хˉ =1 приложена к узлу 4, то стержень 2-4 в этом случае не является нулевым. Усилие в нем определим, соста­вив и решив уравнение ∑ Y = 0 V2-4X  - Хˉ = 0.

Отсюда V2-4X  = + 1.

Результаты вычислений поместим в таблицу 3.1.

                                                                                                                          

                                                                             Таблица 3.1

Данные к расчету перемещения узла 4 от заданной нагрузки

№ стержня Длина стержня,      см Площадь сечения,     см2 Усилие в стержне от силы Р=1 Усилие  в стержне от силы Р=10 Тс (NX · NP · Li) / Fi
 1-2 283 20 -0,707  -7072  70739
 2-3 283 20 -0,707  -7072  70739
 1-4 200   10 0,5 5000  50000
 3-4 200 10 0,5 5000  50000
 2-4 200 10  1 0 0

 

Вычислим значения величины (NX · NP · Li) / Fi    для каждого стержня и результаты поместим в правый столбец табл. 3.1 Модуль упругости E одинаков для материала всех стержней, поэтому его значение пока опустим и учтем в итоговом результате вычислений.

Подсчитаем величину искомого прогиба ∑ (NX · NP · Li) / Fi = + 241480.

Прогиб f = ∆ХР = ∑ (NX · NP · Li) / (E · Fi) = 241480 / 2100000 = 0,11 cм.

Подсчитаем величину показателя жесткости фермы

f / L = 1,1 · 10-1 / 4 · 102 = 1 / 4000 = 0, 00025.

Такая классическая методика расчета перемещений узлов ферм применима для простых ферм с небольшим количеством стержней. Для сложных ферм (статически определимых и неопределимых) при большом количестве стержней, а также объемных ферм в настоящее время используются программы расчета ферм, например, по методу конечных элементов предлагается использовать компьютерную программу 3DFerm (ОСКАЛ).

 


Дата добавления: 2018-02-28; просмотров: 1374; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!