Критическая концентрация мицеллообразования



Рассмотрим более подробно распределение молекул ПАВ в растворе (см. рис. 21.1). Часть молекул ПАВ адсорбируется на границе раздела жидкость — газ (вода — воздух). Все закономерности, которые были ранее рассмотрены для адсорбции ПАВ на границе раздела жидкости с газовой средой (См. гл. 4 и 5), справедливы и для коллоидных ПАВ. Между молекулами ПАВ в адсорбционном слое 1 и молекулами в растворе 2 существует динамическое равновесие. Часть молекул ПАВ в растворе способна образовывать мицеллы 3; между молекулами ПАВ в растворе и молекулами, входящими в состав мицелл, также существует равновесие. Это равновесие на рис. 21.1 показано стрелками.

Процесс образования мицелл из молекул растворенных ПАВ можно представить следующим образом:

mM ⇄ (M)m (21.5)

где М — молекулярная масса молекулы ПАВ; m — число молекул ПАВ в мицелле.

 

Состояние ПАВ в растворе зависит от их концентрации. При небольших концентрациях (10–4—10–2 M) образуются истинные растворы, а ионогенные ПАВ проявляют свойства электролитов. При достижении критической концентрации мицеллообразования (ККМ) образуются мицеллы, которые находятся в термодинамическом равновесии с молекулами ПАВ в растворе. При концентрации ПАВ выше ККМ избыток ПАВ переходит в мицеллы. При значительном содержании ПАВ могут образовываться жидкие кристаллы (см. параграф 21.4) и гели.

В области, близкой к ККМ, образуются сферические мицеллы (рис. 21.3). При увеличении концентрации ПАВ возникают пластинчатые (рис. 21.1) и цилиндрические мицеллы.

Мицеллы состоят из жидкого углеводородного ядра 4 (рис. 21.1), покрытого слоем полярных ионогенных групп 5. Жидкое состояние углеводородных цепей структурно упорядоченно и тем отличается от объемной жидкой (водной) фазы.

Слой полярных групп молекул ПАВ выступает над поверхностью ядра на 0,2—0,5 нм, формируя потенциалобразующий слой (см. параграф 7.2). Возникает двойной электрический слой, который обусловливает электрофоретическую подвижность мицелл.

Гидрофильная полярная оболочка мицелл резко снижает межфазовое поверхностное натяжение σ на границе мицелла — жидкость (вода). При этом соблюдается условие (10.25), что означает самопроизвольное образование мицелл, лиофильность мицеллярного (коллоидного) раствора и его термодинамическую устойчивость.

Важнейшим поверхностным свойством в растворах ПАВ является поверхностное натяжение σ (см. рис. 2.3), а к числу объемных свойств следует отнести осмотическое давление π (см. рис. 9.4) и молярную электропроводность λ, которая характеризует способность раствора, содержащего ионы, проводить электрический ток.

На рис. 21.2 показаны изменения поверхностного натяжения σЖГ(кривая 2), осмотического давления π (кривая 3) и молярной электропроводности λ (кривая 4) в зависимости от концентрации раствора додецилсульфата натрия, который диссоциирует согласно уравнению (21.3). Область, в которой прекращается снижение поверхностного натяжения растворов коллоидных ПАВ и называют критической концентрацией мицеллообразования. (ККМ).

Осмотическое давление π (кривая 3) сначала в соответствии с формулой (9.11) по мере увеличения концентрации ПАВ растет. В области ККМ этот рост прекращается, что связано с образованием мицелл, размер которых значительно превышает размер молекул растворенных ПАВ. Прекращение роста осмотического давления в связи с увеличением размеров частиц непосредственно следует из формулы (9.13), согласно которой осмотическое давление обратно пропорционально кубу радиуса частиц r 3. Связывание молекул ПАВ в мицеллы снижает их концентрацию в растворе как электролитов. Этим обстоятельствоми объясняется снижение молярной электропроводности в области ККМ (кривая 4).

Математически ККМ можно определить как точку перегиба на кривых «cвойство растворов коллоидных ПАВ — концентрация» (см. рис. 21.2), когда вторая производная этого свойства становится равной нулю, т.е. d 2 N / dc 2= 0. Мицеллообразование следует рассматривать как процесс, аналогичный фазовому переходу от истинного раствора ПАВ к ассоциированному состоянию в мицеллах; при этом мицеллообразование происходит самопроизвольно.

Концентрация ПАВ в мицеллярной форме значительно, на несколько порядков, превышает концентрацию ПАВ в растворе. Мицеллы дают возможность получать растворы коллоидных ПАВ с большим содержанием растворенного вещества по сравнению с истинными растворами. Кроме того, мицеллы являются своеобразным хранилищем ПАВ. Равновесие между различным состоянием ПАВ в растворе (см. рис. 21.1) подвижное, и по мере израсходования ПАВ, например при увеличении поверхности раздела фаз, часть молекул ПАВ в растворе пополняется за счет мицелл.

ККМ — это важнейшее и отличительное свойство коллоидных ПАВ. ККМ соответствует концентрации ПАВ, при которой в растворе возникают мицеллы, находящиеся в термодинамическом равновесии с молекулами (ионами) ПАВ. В области ККМ резко изменяются поверхностные и объемные свойства растворов.

ККМ выражают в молях на литр или в процентах растворенного вещества. Для стеарата кальция при 323К ККМ равна 5.10–4моль/л, а для эфиров сахарозы (0,5¸1,0)10–5моль/л.

Значения ККМ невысокие, достаточно небольшого количества ПАВ, чтобы проявились объемные свойства их растворов, Еще раз подчеркнем, что не все ПАВ в состоянии образовывать мицеллы. Необходимым условием мицеллообразования являются наличие полярной группы в молекуле ПАВ (см. рис. 5.2) и достаточно большая длина углеводородного радикала.

Мицеллы образуются и в неводных растворах ПАВ. Ориентация молекул ПАВ в неполярных растворителях противоположна их ориентации в воде, т.е. гидрофобный радикал, обращен к углеводородной жидкости.

ККМ проявляется в некотором интервале концентрации ПАВ (см. рис. 21.2). C ростом концентрации ПАВ могут происходить два процесса: увеличение числа сферических мицелл и изменение их формы. Сферические мицеллы теряют правильную форму и могут превращаться в пластинчатые.

Таким образом, в области ККМ происходит наиболее значительное изменение объемных и поверхностных свойств растворов коллоидных ПАВ, а на кривых, характеризующих эти свойства, появляются перегибы (см. рис. 21.2).

Объемные свойства коллоидных ПАВ проявляются в таких процессах, как солюбилизация, образование пен, эмульсий и суспензий. Наиболее интересным и специфическим из этих свойств является солюбилизация.

Солюбилизацией называют растворение в растворах коллоидных ПАВ тех веществ, которые в данной жидкости обычно нерастворимы. Например, в результате солюбилизации в водных растворах ПАВ растворяются углеводородные жидкости, в частности бензин и керосин, а также жиры, которые в воде не растворяются.

Солюбилизация связана с проникновением в мицеллы веществ, которые называют солюбилизатами. Механизм солюбилизации для различной природы солюбилизатов можно пояснить при помощи рис. 21.3. При солюбилизации происходит внедрение неполярных веществ (бензола, гексана, бензина и др.) в мицеллу. Если солюбилизат содержит полярную и неполярную группы, то он располагается в мицелле углеводородным концом внутрь, а полярная группа обращена наружу. В отношении солюбилизатов, содержащих несколько полярных групп, наиболее вероятна адсорбция на наружном слое поверхности мицелл.

Солюбилизация начинается тогда, когда концентрация ПАВ достигает ККМ. При концентрации ПАВ выше ККМ число мицелл увеличивается, и солюбилизация идет более интенсивно. Солюбилизирующая способность коллоидных ПАВ растет в пределах данного гомологического ряда по мере увеличения числа углеводородных радикалов. Ионогенные ПАВ обладают большей солюбилизирующей способностью по сравнению с неиногенными.

Особенно значительна солюбилизирующая способность биологически активных коллоидных ПАВ — хелата и дезоксихелата натрия. Солюбилизация и эмульгирование (см. параграф 15.4) являются первичными процессами усвоения жиров; в результате солюбилизации жиры растворяются в воде, а затем усваиваются организмом.

Таким образом, объемные свойства растворов коллоидных ПАВ обязаны образованию мицелл.


Дата добавления: 2015-12-21; просмотров: 41; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!