Вопрос 3. Каскадные схемы включения асинхронных двигателей.
Каскадными называют такие схемы включения АД, которые, обеспечивая регулирование его скорости, позволяют одновременно использовать энергию потерь. По способу использования этой энергии различают схемы электромеханического и электрического машинно-вентильных каскадов.
В электромеханическом машинно-вентильном каскаде (рис. а) обмотка ротора АД 2, приводящего в движение рабочую машину 1, подключается к трехфазному неуправляемому выпрямителю 4, собранному на полупроводниковых вентилях. К выводам выпрямителя присоединен якорь вспомогательной машины постоянного тока 3, ЭДС которой Ев.м направлена навстречу ЭДС выпрямителя Ев. АД 2 и машина 3 соединены одним валом. Поступающая из сети мощность Р1 за вычетом потерь в статоре АД 2 передается на ротор. Большая часть этой мощности, называемая электромагнитной в виде полезной механической мощности передается рабочей машине 1. Оставшаяся часть, за вычетом потерь в цепях ротора АД 2 и выпрямителя 4 с помощью вспомогательной машины преобразуется в механическую мощность и возвращается на вал рабочей машины 1.
В электрическом машинно-вентильном каскаде (рис. б) в отличие от электромеханического вспомогательная машина 3 не имеет механической связи с АД 2, а соединена одним валом с синхронным генератором 5, подключенным к сети переменного тока, т. е. энергия потерь передается не на вал рабочей машины У, а отдается в сеть, рабочей же машине передается только механическая мощность.
|
|
Вопрос 4. Переходные процессы электроприводов. Причины, обуславливающие переходные процессы.
Причины возникновения переходных процессов:
- изменение момента нагрузки Мс;
- изменение момента М, то есть переход привода с одной характеристики на другую, имеющий место при пуске, торможении, реверсе, регулировании скорости, изменении какого-либо параметра привода.
Необходимость в анализе переходных процессов возникает в связи с тем, что производительность ряда ответственных механизмов (например, реверсивного прокатного стана) определяется быстротой протекания переходных процессов; качество выполнения многих технологических операций определяется переходными процессами (движение лифта, врезание резца в деталь и т.п.); механические и электрические перегрузки оборудования в большинстве случаев определяются переходными процессами.
Основная задача при изучении переходных процессов сводится к определению зависимостей w(t), M(t) и i(t) для любых конкретных приводов в любых условиях.
При изучении переходных процессов мы будем полагать известными следующие исходные данные:
- начальное состояние: wнач, Мнач, iнач;
|
|
- конечное состояние: wкон, Мкон, iкон и соответствующая ему характеристика w(М);
- характер изменения во времени фактора, вызвавшего переходный процесс;
- параметры привода.
Вопрос 5. Торможение асинхронного двигателя.
Торможение пртивовключением. Сущность торможения заключается в том, что электродвигатель включается на обратный ход и тем самым тормозиться. В АД режим противовключения может быть получен изменением направления вращения магнитного поля, для чего на ходу переключают 2 фазы обмотки статора. При этом ротор будет вращаться в сторону, противоположную вращению поля и быстро остановиться. Как только ротор остановиться двигатель необходимо отключить, чтобы не изменилось направление вращения ротора. Этот способ неэкономичен, т.к. в этом случае в несколько раз увеличиваются потери энергии, что завышает габариты конструируемых двигателей.
Рекуперативное торможение осуществляется в том случае, когда скорость АД превышает синхронную и он работает в генераторном режиме параллельно с сетью, т.е. при ω2>ω1. Такой режим возникает, например, при переходе двухскоростного АД с высокий скорости на низкую.
Для динамического торможения обмотку статора АД отключают от сети переменного тока и подключают к источнику постоянного тока. Обмотка ротора АД 1 при этом может быть закорочена или в ее цепь включаются добавочные резисторы 3 с сопротивлением R. Возникает неподвижное поле статора, которое наводит ЭДС и токи во вращающемся роторе. В результате взаимодействия этих токов с полем статора создается тормозной момент.
|
|
Торможение при самовозбуждении основано на том, что после отключения АД от сети его электромагнитное поле затухает (исчезает не мгновенно) в течение некоторого, пусть и небольшого интервала времени. За счет энергии этого затухающего поля и использования специальных схем включения АД можно обеспечить его самовозбуждение и реализовать тормозной режим.
Дата добавления: 2018-02-15; просмотров: 2358; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!