Закалка и старение алюминиевых
Сплавов
Цель работы
1. Ознакомиться с принципами легирования, составом, свойствами, и особенностями термической обработки дуралюминов.
2. Научиться осуществлять термическою обработку дуралюмина.
3. Определить на основании опытных данных характер зависимости твердости дуралюмина от температуры и длительности старения.
Теоретическое обоснование работы
Дуралюмин - один из первых промышленных сплавов на основе алюминия. Благодаря малой плотности (удельный вес алюминия 2,7 г/см3), высокой тепло- и электропроводности, коррозионной стойкости алюминий и его сплавы нашли широкое применение в самолётостроении, судостроении, автомобильной и электротехнической промышленности, бытовой технике и других областях. Технический алюминий, обладая высокой пластичностью, имеет низкую прочность.
При введении легирующих элементов прочность может быть значительно повышена как за счет искажения кристаллической решетки при растворении этих элементов, так и за счет проведения упрочняющей термической обработки. Для создания возможности такой обработки алюминиевые сплавы легируют элементами, имеющими переменную ограниченную растворимость в алюминии. Упрочняющая термическая обработка состоит из операций -закалки и старения естественного (при комнатной температуре) или искусственного (при повышенных температурах).
Дуралюмины принадлежат к термически упрочняемым деформируемым сплавам. Они хорошо деформируются в горячем и холодном состояниях, хорошо обрабатываются резанием (в закаленном и состаренном состояниях), хорошо свариваются контактной сваркой.
|
|
Дуралюмин представляет собой сплав шести компонентов — алюминия, меди, магния, марганца, кремния и железа, Основным легирующим элементом, обеспечивающим упрочнение при термической обработке, является медь. Аналогичное назначение имеет магний. Марганец вводится для повышения коррозионной стойкости. Кремний и железо являются постоянными примесями. Кремний может быть отнесен к упрочняющим элементам, однако упрочнение за счет кремния в этом сплаве невелико. Железо в дуралюмине играет отрицательную роль. Его наличие в дуралюмине уменьшает эффект старения, так как в отличие от меди, магния, кремния железо образует нерастворимое в алюминии соединение . Медь, находящаяся в этом соединении, не может быть переведена при нагревании в твердый раствор и не может участвовать в процессах старения и упрочнения. Вредное влияние железа уменьшается при введении магния, Присадка магния даже в небольших количествах, придает сплавам способность старения при комнатной температуре, несмотря на наличие железа, так как в этом случае образуется растворимое в алюминии соединение из которого медь и магний при нагревании переходят в твердый раствор и впоследствии могут участвовать в процессах старения.
|
|
Отрицательное влияние железа обусловлено также тем, что оно образует соединения ( ), имеющие грубую пластинчатую форму, понижающие прочность и пластичность.
Вследствие сложности состава, вызванной стремлением максимально повысить прочность, дуралюмины отличаются пониженной коррозионной стойкостью во влажном воздухе, в речной и морской воде и нуждаются в защите от коррозии. Наибольшее распространение в промышленности получили метод плакирования (покрытия техническим алюминием) и метод электрохимического оксидирования (анодирования), при котором на поверхности изделия образуется более плотная и толстая, чем при естественных условиях, окисная пленка , защищающая дуралюмин от коррозии.
Обозначение марок дуралюминов состоит из букв и цифр. В начале марки ставится буква Д, указывающая на принадлежность сплава к дуралюминам, т. е. к системе Al-Cu-Mg, затем следует условный (порядковый) номер сплава. После этого ставятся буквы, указывающие на вид обработки: М (мягкий) -отожженный, Н - нагартованный, Т (термически обработанный) - после закалки и естественного старения. Дуралюмины, используемые при обычных температурах, по составу и свойствам делятся на дуралюмины нормального состава, повышенной пластичности, повышенной прочности.
|
|
Состав дуралюминов по ГОСТ 4784-97 приведен в таблице 8.1.
Таблица 8.1
Обозначение марок | Массовая доля элементов, % | |||||
По НД* | По ИСО 209-1 | Кремний | Железо | Медь | Марганец | Магний |
Д1 1110 | AlCu4MgSi 2017 | 0.20-0.8 | 0.7 | 3.5-4.5 | 0.40-1.00 | 0.40-0.8 |
Д16 1160 | AlCuMg1 2024 | 0.50 | 0.50 | 3.8-4.9 | 0.30-0.9 | 1.2-1.8 |
Д18 1180 | AlCu2.5Mg 2117 | 0.5 | 0.5 | 2.2-3.0 | 0.20 | 0.20-0.50 |
*ГОСТ 1131, ГОСТ 7871, ГОСТ 13726, ГОСТ 21631.
В дуралюмине нормального состава (Д1) содержание меди 3,8-4,8%, магния и марганца по 0,4-0,8%', кремния и железа не более 0,7% каждого.
Дуралюмин повышенной пластичности (Д18) имеет пониженную концентрацию меди (2,2-3,0%) и магния (0,2- 0,5%), не содержит марганца.
Рис. 8.1. Диаграмма состояния сплавов алюминия с медью
Дуралюмин повышенной прочности (Д16) имеет повышенное содержание магния (1,2-1,8%).
Поскольку основным легирующим элементом в дуралюмине является медь, для рассмотрения процессов, происходящих при термической обработке, можно воспользоваться диаграммой бинарных сплавов алюминий-медь (рис. 8.1).
|
|
В соответствии с диаграммой наибольшая растворимость меди в количестве 5,7% имеет место при эвтектической температуре 821 К (548° С), при комнатной температуре в растворе может находиться до 0,5% Си. После первичной кристаллизации сплавы, содержащие от 0,5 до 5,7% меди имеют структуру -твердого раствора, из которого при дальнейшем медленном охлаждении вследствие уменьшения растворимости меди выделяется химическое соединение . Прочность сплавов с такой равновесной структурой не высокая, так как кристаллы относительно крупные и не представляют больших препятствий для движения дислокаций. Повышение прочности достигается за счет получения неравновесных структур, имеющих кристаллические решетки с большим количеством дефектов.
Быстрым охлаждением (закалкой) от температуры выше линии фиксируется пересыщенный твердый раствор . Такой пересыщенный твердый раствор является неустойчивым, в нем протекают изменения, получившие название старения. Представление о механизме старения сводится к следующему. В процессе естественного старения происходят подготовительные процессы к выделению избыточной фазы . Образование такой фазы происходит при относительно высоких температурах нагрева, обеспечивающих достаточную скорость перемещения (диффузий) атомов. При комнатной температуре скорость диффузии атомов меди недостаточна для образования частиц соединения , так как для этого необходимо обогащение медью до 54%. Однако атомы меди, занимающие после закалки в решетке алюминия произвольные места, будут стремиться занять более выгодное энергетически положение. Они будут перемещаться к дефектным местам кристаллической решетки, образуя тончайшие прослойки, обогащенные атомами меди. Протяженность этих прослоек, получивших название зон Гинье-Престона, достигает нескольких десятков ангстрем (30—60 А) при толщине
5-10 . Концентрация меди в этих зонах меньше, чем в соединении СиА12, расположение атомов алюминия и меди неупорядоченное.
Такие зоны (ГП1) вследствие значительной разницы в размерах атомов меди (атомный радиус 1,28 А) и алюминия (1,43 ), имеют искаженную кристаллическую решетку, что создает препятствия для перемещения дислокаций при пластической деформации, приводит к повышению прочности и некоторому снижению пластических свойств; Этот самопроизвольный процесс получил название естественного старения. При нагревании процессы превращения развиваются более полно. Такое старение, получившее название искусственного, протекает в несколько стадий.
На первой стадии —при температурах до 423 К (100-150° С) образуются зоны Гинье-Престона (ГП2), имеющие такую же природу, как и при естественном старении, но отличающиеся большими размерами (толщина этих зон составляет 10-40 А, диаметр – 200-300 А) и более упорядоченным расположением атомов алюминия и меди.
На второй стадии концентрация меди в этих зонах достигает стехиометрического соотношения, соответствующего соединению , но образования самостоятельной фазы еще не происходит. Из зон ГП2 образуется промежуточная -фаза, имеющая кристаллическую решетку, когерентно-связанную с решеткой твердого раствора, но отличную от решетки -твердого раствора и от решетки -фазы.
На третьей стадии при температуре около 200°С происходит обособление - фазы и превращение ее в стабильную -фазу, а при увеличении выдержки или при более высоких температурах старения развиваются процессы коагуляции (укрупнения) -фазы.
При термической обработке дуралюмина протекают процессы, аналогичные рассмотренным, однако присутствие в сплаве других элементов — магния, марганца, кремния, железа приводит к некоторым их усложнениям.
В литом дуралюмине по границам зерен твердого раствора в виде сетки располагаются не только фаза , но и другие хрупкие фазы - , , , , поэтому механические свойства литого дуралюмина низкие - =160-170 МПа, = 1-1,5%. После отжига при температуре 480-500° С и последующей горячей пластической деформации структура дуралюмина состоит из -твердого раствора с равномерно распределенными включениями тех же фаз. Расположение этих фаз внутри зерен более благоприятно сказывается на пластичности сплава, но прочность при этом повышается незначительно.
При нагреве под закалку до температуры 500е С все соединения за исключением железосодержащих фаз переходят в твердый раствор. После закалки в воде структура дуралюмина состоит из пересыщенного твердого раствора и включений нерастворимых соединений железа. Свежезакаленный дуралюмин имеет невысокую прочность =240-260 МПа, но высокую пластичность ( = 20-22%), поэтому его можно подвергать различным операциям формоизменения в холодном состоянии (обработка давлением, резанием). Высокая пластичность сохраняется в зависимости от состава сплава в течение 30-120 мин. После инкубационного периода в закаленном сплаве начинаются процессы старения. В дуралюмине, в отличие от двойных сплавов алюминия с медью в образовании зон Гинье-Престона участвует магний. При нагревании образуется метастабильная S'-фаза, а затем фаза S- . Как видно из графика зависимости прочности от времени выдержки при различных температурах старения (рис. 8.2), наибольший эффект упрочнения достигается при естественном старении в течение 4-7 суток.
Искусственное старение при температурах 100-150° С также вызывает упрочнение, но несколько более слабое, При
Рис. 8.2. Изменение прочности дуралюмина в зависимости от режима старения
температурах 200° С и более сначала наблюдается интенсивное повышение прочности, связанное с образованием дисперсных фаз ( , ), но затем происходит постепенное понижение прочности, обусловленное процессами коагуляции этих фаз. Искусственное старение дуралюмина не только дает меньший эффект упрочнения по сравнению с естественным, но и снижает пластические свойства, увеличивает чувствительность к концентраторам напряжений и уменьшает коррозионную стойкость сплава. Поэтому дуралюмины обычно подвергаются естественному старению в течение 4-7 суток.
Если возникает необходимость сохранения высоких пластических свойств закаленного сплава в течение некоторого периода времени до формоизменения, изделия (например, заклепки) хранят при температуре -50° С, так как при низких температурах процессы старения практически не развиваются. В тех случаях, когда естественное старение произошло, но сплав должен быть возвращен в пластическое свежезакаленное состояние, производят кратковременный нагрев (30-120 секунд) до температуры 230°-270° С. При таком нагреве происходит растворение неустойчивых зон ГП1 и быстрым охлаждением фиксируется пересыщенный твердый раствор. Такая обработка получила название возврата или обработки на возврат. Последующее вылёживание при комнатной температуре приводит к образованию зон ГП1 и упрочнению сплава.
Свойства дуралюминов основных марок после различных видов термической обработки приведены в табл. 8.2.
Таблица 8.2
Механические свойства дуралюминов
Марка сплава | Механические свойства дуралюминов | Применение | ||||||||
после отжига | после закалки и естественного старения | |||||||||
, МПа | , МПа | , % | НВ | , МПа | , МПа | , % | НВ | |||
Д1 | 210 | •110 | 18 | 45 | 420 | 240 | 15 | 95 | Лопатки, диски, компрессоров, узлы крепления, заклепки | |
Д16 | 220 | 110 | 18 | 50 | 470 | 320 | 17 | 105 | Силовые детали самолетов, строительные конструкции, кузова автомобилей | |
Д18 | 160 | 60 | 24 | 38 | 300 | 170 | 24 | 70 | Заклепки |
Дата добавления: 2018-02-15; просмотров: 991; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!