Методы получения статики простых объектов при активном эксперименте. Метод наименьших квадратов.



 

Суть метода наименьших квадратов (МНК).

Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных а и b формула принимает наименьшее значение. То есть, при данных а и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.

Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

Вывод формул для нахождения коэффициентов.

Составляется и решается система из двух уравнений с двумя неизвестными. Находим частные производные функции формула по переменным а и b, приравниваем эти производные к нулю.

Решаем полученную систему уравнений любым методом (например методом подстановки или методом Крамера) и получаем формулы для нахождения коэффициентов по методу наименьших квадратов (МНК).

При данных а и b функция формула принимает наименьшее значение. Доказательство этого факта приведено ниже по тексту в конце страницы .

Вот и весь метод наименьших квадратов. Формула для нахождения параметра a содержит суммы формула, формула, формула, формула и параметр n - количество экспериментальных данных. Значения этих сумм рекомендуем вычислять отдельно. Коэффициент b находится после вычисления a.

Метод получения статики простых объектов при пассивном эксперименте. Регрессионный анализ.

Регрессионный анализ - это метод установления аналитического выражения стохастической зависимости между исследуемыми признаками. Уравнение регрессии показывает, как в среднем изменяется упри изменении любого из xi, и имеет вид:

где у - зависимая переменная (она всегда одна);

хi - независимые переменные (факторы) (их может быть несколько).

Если независимая переменная одна - это простой регрессионный анализ. Если же их несколько (п 2), то такой анализ называется многофакторным.

В ходе регрессионного анализа решаются две основные задачи:

построение уравнения регрессии, т.е. нахождение вида зависимости между результатным показателем и независимыми факторами x1, x2, …, xn.

оценка значимости полученного уравнения, т.е. определение того, насколько выбранные факторные признаки объясняют вариацию признака у.

Применяется регрессионный анализ главным образом для планирования, а также для разработки нормативной базы.

В отличие от корреляционного анализа, который только отвечает на вопрос, существует ли связь между анализируемыми признаками, регрессионный анализ дает и ее формализованное выражение. Кроме того, если корреляционный анализ изучает любую взаимосвязь факторов, то регрессионный - одностороннюю зависимость, т.е. связь, показывающую, каким образом изменение факторных признаков влияет на признак результативный.

Регрессионный анализ - один из наиболее разработанных методов математической статистики. Строго говоря, для реализации регрессионного анализа необходимо выполнение ряда специальных требований (в частности, xl,x2,...,xn; y должны быть независимыми, нормально распределенными случайными величинами с постоянными дисперсиями). В реальной жизни строгое соответствие требованиям регрессионного и корреляционного анализа встречается очень редко, однако оба эти метода весьма распространены в экономических исследованиях. Зависимости в экономике могут быть не только прямыми, но и обратными и нелинейными. Регрессионная модель может быть построена при наличии любой зависимости, однако в многофакторном анализе используют только линейные модели вида:

Построение уравнения регрессии осуществляется, как правило, методом наименьших квадратов, суть которого состоит в минимизации суммы квадратов отклонений фактических значений результатного признака от его расчетных значений, т.е.:

где т - число наблюдений;

j = a + b1x1j + b2x2j+ ... + bnхnj - расчетное значение результатного фактора.

Коэффициенты регрессии рекомендуется определять с помощью аналитических пакетов для персонального компьютера или специального финансового калькулятора. В наиболее простом случае коэффициенты регрессии однофакторного линейного уравнения регрессии вида y = а + bх можно найти по формулам:

Проверка адекватности ММ.

Установление адекватности математической модели реальному объекту осуществляется путем непосредственного сравнения ( в смысле принятого критерия) выходных величин этого объекта с выходными величинами модели. Если модель объекта управления представляется системой дифференциальных уравнений, то указанное сопоставление выходных величин, естественно, требует предварительного решения дифференциальных уравнений при определенных начальных и граничных условиях, аналогичных условиям протекания реального процесса в аппарате. В связи с этим унификация математических моделей приводит соответственно и к унификации методов решения дифференциальных уравнений, которыми описываются процессы в аппаратах. Поэтому стремление к унификации моделей и методов их математического исследования оправдано, если при этом ставится задача совмещения модели с реальным объектом, например варьированием входящими в математическую модель коэффициентами.

Проверка адекватности математической модели показала, что расхождение расчетных и экспериментальных данных находится в пределах доверительного интервала.

 

30.  Классификация решений дифференциальных уравнений. Особенности численных методов решения дифференциальных уравнений, погрешности..

 

Методы решения обыкновенных дифференциальных уравнений можно разбить на следующие группы: графические, аналитические, приближенные и численные.

Графические методы используют геометрические построения. В частности, одним из них является метод изоклин для решения дифференциальных уравнений первого порядка вида (1.2).Он основан на геометрическом определении интегральных кривых по заранее построенному полю направлений, определенному изоклинами.

С некоторыми аналитическими методами читатель знаком по курсу дифференциальных уравнений. Для ряда уравнений первого порядка (с разделяющимися переменными, однородных, линейных и др.), а также для некоторых типов уравнений высших порядков (например, линейных с постоянными коэффициентами) удается получить решения в виде формул путем аналитических преобразований.

Приближенные методырешения обыкновенных дифференциальных уравнений используют различные упрощения самих уравнений путем обоснованного отбрасывания некоторых содержащихся в них членов, а также специальным выбором классов искомых функций. Например, в некоторых инженерных задачах удается представить решение в виде суммы двух составляющих, первое из которых определяет основное решение, а второе - малая добавка (возмущение), квадратом которой можно пренебречь. На этом основаны различные методы линеаризации. В приближенных методах также широко используется разложение решения в ряд по некоторому малому параметру, содержащемуся в данной задаче. К данной группе методов относятся и асимптотические методы, с помощью которых получаются решения, описывающие предельную картину рассматриваемого явления.

Здесь мы будем рассматривать численные методы решения дифференциальных уравнений, которые в настоящее время являются основным инструментом при исследовании научно-технических задач, описываемых дифференциальными уравнениями. При этом необходимо подчеркнуть, что данные методы особенно эффективны в сочетании с использованием современных компьютеров.

Наиболее распространенным и универсальным численным методом решения дифференциальных уравнений является метод конечных разностей. Его сущность состоит в следующем. Область непрерывного изменения аргумента (например, отрезок) заменяется дискретным множеством точек, называемых узлами. Эти узлы составляют разностную сетку. Искомая функция непрерывного аргумента приближенно заменяется функцией дискретного аргумента на заданной сетке. Эта функция называется сеточной. Исходное дифференциальное уравнение заменяется разностным уравнением относительно сеточной функции. При этом для входящих в уравнение производных используются соответствующие конечно-разностные соотношения. Такая замена дифференциального уравнения разностным называется его аппроксимацией на сетке (или разностной аппроксимацией). Таким образом, решение дифференциального уравнения сводится к отысканию значений сеточной функции в узлах сетки.

Обоснованность замены дифференциального уравнения разностным, точность получаемых решений, устойчивость метода - важнейшие вопросы, которые требуют тщательного изучения. Рассмотрим лишь некоторые элементарные сведения по данным вопросам.

 


Дата добавления: 2018-02-18; просмотров: 776; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!