Разработка рекомендаций по уменьшению риска



4.5.1. Разработка рекомендаций по уменьшению риска является заключительным этапом анализа риска. В рекомендациях представляются обоснованные меры по уменьшению риска, основанные на результатах оценок риска.

4.5.2. Меры по уменьшению риска могут иметь технический и (или) организационный характер. В выборе типа меры решающее значение имеет общая оценка действенности и надежности мер, оказывающих влияние на риск, а так же размер затрат на их реализацию.

4.5.3. На стадии эксплуатации опасного производственного объекта организационные меры могут компенсировать ограниченные возможности для принятия крупных технических мер по уменьшению риска.

4.5.4. При разработке мер по уменьшению риска, необходимо учитывать, что вследствие возможной ограниченности ресурсов, в первую очередь должны разрабатываться простейшие и связанные с наименьшими затратами рекомендации, а также меры на перспективу.

4.5.5. В большинстве случаев первоочередными мерами обеспечения безопасности, как правило, являются меры предупреждения аварии. Выбор планируемых для внедрения мер безопасности имеет следующие приоритеты:

1).меры уменьшения вероятности возникновения аварийной ситуации, включающие:

- меры уменьшения вероятности возникновения инцидента,

- меры уменьшения вероятности перерастания инцидента в аварийную ситуацию;

2).меры уменьшения тяжести последствий аварии, которые, в свою очередь, имеют следующие приоритеты:

- меры, предусматриваемые при проектировании опасного объекта (например, выбор несущих конструкций, запорной арматуры);

- меры, относящиеся к системам противоаварийной защиты и контроля (например, применение газоанализаторов),

- меры, касающиеся готовности эксплуатирующей организации к локализации и ликвидации последствий аварий.

Методы проведения анализа риска

5.1. При выборе методов проведения анализа риска необходимо учитывать этапы функционирования объекта (проектирование, эксплуатация и т.д.), цели анализа, критерии приемлемого риска, тип анализируемого опасного производственного объекта и характер опасности, наличие ресурсов для проведения анализа, опыт и квалификацию исполнителей, наличие необходимой информации и другие факторы.

Так, на стадии идентификации опасностей и предварительных оценок риска1рекомендуется применять методы качественные анализа и оценки риска, опирающиеся на продуманную процедуру, специальные вспомогательные средства (анкеты, бланки, опросные листы, инструкции) и практический опыт исполнителей.

Эта стадия может именоваться как анализ опасностей

5.3. На стадии идентификации опасностей рекомендуется использовать один или несколько из перечисленных ниже методов анализа риска:

- «Что будет, если...?»;

- проверочный лист;

- анализ опасности и работоспособности;

- анализ вида и последствий отказов;

- анализ «дерева отказов»;

- анализ «дерева событий»;

- соответствующие эквивалентные методы.

 

1. Методы «Проверочного листа»и «Что будет, если...?» или их комбинация относятся к группе методов качественных оценок опасности, основанных на изучении соответствия условий эксплуатации объекта или проекта требованиям промышленной безопасности.

Результатом проверочного листа является перечень вопросов и ответов о соответствии опасного производственного объекта требованиям промышленной безопасности и указания по их обеспечению. Метод проверочного листа отличается от «Что будет, если...?» более обширным представлением исходной информации и представлением результатов о последствиях нарушений безопасности.

Эти методы наиболее просты (особенно при обеспечении их вспомогательными формами, унифицированными бланками, облегчающими на практике проведение анализа и представление результатов), нетрудоемки (результаты могут быть получены одним специалистом в течение одного дня) и наиболее эффективны при исследовании безопасности объектов с известной технологией.

2. «Анализ вида и последствий отказов» (АВПО) применяется для качественного анализа опасности рассматриваемой технической системы. Существенной чертой этого метода является рассмотрение каждого аппарата (установки, блока, изделия) или составной части системы (элемента) на предмет того, как он стал неисправным (вид и причина отказа) и какое было бы воздействие отказа на техническую систему.

Систему классификации отказов по критериям вероятности-тяжести последствий следует конкретизировать для каждого объекта или технического устройства с учетом его специфики.

Ниже (Таблица 1) в качестве примера приведены показатели (индексы) уровня и критерии критичности по вероятности и тяжести последствий отказа. Для анализа выделены четыре группы, которым может быть нанесен ущерб от отказа: персонал, население, имущество (оборудование, сооружения, здания, продукция и т.п.), окружающая среда.

В таблице 2 применены следующие варианты критериев:

- критерии отказов по тяжести последствий:

- катастрофический отказ – приводит к смерти людей, существенному ущербу имуществу, наносит невосполнимый ущерб окружающей среде,

- критический/некритический отказ – угрожает/не угрожает жизни людей, приводит(не приводит) к существенному ущербу имуществу, окружающей среде,

- отказ с пренебрежимо малыми последствиями – отказ, не относящийся по своим последствиям ни к одной из первых трех категорий.

- Категории (критичность) отказов:

- «А» - обязателен количественный анализ риска, или требуются особые меры обеспечения безопасности;

- «В» – желателен количественный анализ риска, или требуется принятие определенных мер безопасности;

- «С» – рекомендуется проведение качественного анализа опасностей или принятие некоторых мер безопасности;

- «Д» – анализ и принятие специальных (дополнительных) мер безопасности не требуется.

Методы АВПО, АВПКО применяются, как правило, для анализа проектов сложных технических систем или технических решений. Выполняется группой специалистов различного профиля (например, специалист по технологии, химическим процессам, инженер-механик) из 3 ‑ 7 человек в течение нескольких дней, недель.

Таблица 1

Матрица «вероятность-тяжесть последствий

Частота возникновения

Тяжесть последствий отказов

отказа 1/год

катастрофи- ческий отказ критический отказ некритический отказ отказ с пренебрежимо малыми последствиями
Частый отказ >1 А А А С
Вероятный отказ 1 - 10-2 А А В С
Возможный отказ 10-2 - 10-4 А В В С
Редкий отказ 10-4 - 10-6 А В С Д
Практически невероятный отказ <10-6 В С С Д

3. В методе «Анализ опасности и работоспособности»(АОР)исследуется влияние отклонений технологических параметров (температуры, давления и пр.) от регламентных режимов с точки зрения возможности возникновения опасности. АОР по сложности и качеству результатов соответствует уровню АВПО, АВПКО.

В процессе анализа для каждой составляющей опасного производственного объекта или технологического блока определяются возможные отклонения, причины и указания по их недопущению. При характеристике отклонения используются ключевые слова «нет», «больше», «меньше», «также как», «другой», «иначе чем», «обратный» и т.п. Применение ключевых слов помогает исполнителям выявить все возможные отклонения. Конкретное сочетание этих слов с технологическими параметрами определяется спецификой производства.

Примерное содержание ключевых слов следующее:

«НЕТ» – отсутствие прямой подачи вещества, когда она должна быть;

«БОЛЬШЕ (МЕНЬШЕ)» – увеличение (уменьшение) значений режимных переменных по сравнению с заданными параметрами (температуры, давления, расхода);

«ТАКЖЕ КАК» – появление дополнительных компонентов (воздух, вода, примеси);

«ДРУГОЙ» – состояние, отличающиеся от обычной работы (пуск, остановка, повышение производительности и т.д.);

«ИНАЧЕ ЧЕМ» – полное изменение процесса, непредвиденное событие, разрушение, разгерметизация оборудования;

«ОБРАТНЫЙ» – логическая противоположность замыслу, появление обратного потока вещества.

Результаты анализа представляются на специальных технологических листах (таблицах). Степень опасности отклонений может быть определена количественно путем оценки вероятности и тяжести последствий рассматриваемой ситуации по критериям критичности аналогично методу АВПКО (Таблица 1).

Отметим, что метод АОР, также как АВПКО, кроме идентификации опасностей и их ранжирования позволяет выявить неясности и неточности в инструкциях по безопасности и способствует их дальнейшему совершенствованию. Недостатки методов связаны с затрудненностью их применения для анализа комбинаций событий, приводящих к аварии.

4. Практика показывает, что крупные аварии, как правило, характеризуются комбинацией случайных событий, возникающих с различной частотой на разных стадиях возникновения и развития аварии (отказы оборудования, ошибки человека, нерасчетные внешние воздействия, разрушение, выброс, пролив вещества, рассеяние веществ, воспламенение, взрыв, интоксикация и т.д.). Для выявления причинно-следственных связей между этими событиями используют логико-графические методы анализа «деревьев отказов» и «деревьев событий».

При анализе «деревьев отказов» (АДО) выявляются комбинации отказов (неполадок) оборудования, инцидентов, ошибок персонала и нерасчетных внешних (техногенных, природных) воздействий, приводящих к головному событию (аварийной ситуации). Метод используется для анализа возможных причин возникновения аварийной ситуации и расчета ее частоты (на основе знания частот исходных событий). При анализе дерева отказа (аварии) рекомендуется определять минимальные сочетания событий, определяющие возникновение или невозможность возникновения.

Анализ «дерева событий» (АДС) – алгоритм построения последовательности событий, исходящих из основного события (аварийной ситуации). Используется для анализа развития аварийной ситуации. Частота каждого сценария развития аварийной ситуации рассчитывается путем умножения частоты основного события на условную вероятность конечного события (например, аварии с разгерметизацией оборудования с горючим веществом в зависимости от условий могут развиваться как с воспламенением, так и без воспламенения вещества).

5. Методы количественного анализа риска, как правило, характеризуются расчетом нескольких показателей риска, упомянутых в приложении 1, и могут включать один или несколько вышеупомянутых методов (или использовать их результаты). Проведение количественного анализа требует высокой квалификации исполнителей, большого объема информации по аварийности, надежности оборудования, проведения экспертных работ, учета особенностей окружающей местности, метеоусловий, времени пребывания людей в опасных зонах и других факторов.

Количественный анализ риска позволяет оценивать и сравнивать различные опасности по единым показателям и наиболее эффективен:

- на стадии проектирования и размещения опасного производственного объекта;

- при обосновании и оптимизации мер безопасности;

- при оценке опасности крупных аварий на опасных производственных объектах, имеющих однотипные технические устройства (например, магистральные трубопроводы);

- при комплексной оценке опасностей аварий для людей, имущества и окружающей природной среды.

12. Методы исследования опасностей (количественные и качественные подходы, направление анализа, экспериментальные методы исследований).

СИСТЕМНЫЙ ПОДХОД К АНАЛИЗУ ВОЗМОЖНЫХ ОТКАЗОВ: ПОНЯТИЕ, НАЗНАЧЕНИЕ, ЦЕЛИ.

С позиций безопасности системный подход к анализу возможных отказов состоит в том, чтобы увидеть, как части системы функционируют во взаимодействии с другими ее частями. Системный анализ - методология исследования любых объектов посредством представления их в качестве отдельных элементов и анализа этих элементов; применяется для:- выявления и четкого формулирования проблемы в условиях неопределенности;- выбора стратегии исследования и разработок;- точного определения систем (границ, входов, выходов, связей), выявления целей развития и функционирования системы;- выявление функций и состава вновь создаваемой системы. Системы являются сложными многоуровневыми и многокомпонентными образованиями. В целях адекватной информации и определения причинных связей элементы системы конкретизируются. Такой подход позволяет однозначно определить опасности и опасные состояния системы. Он обеспечивается декомпозицией систем - расчленением иерархии и организации системы на взаимосвязанные составные части (подсистемы, элементы), последующим исследованием их независимо друг от друга и координацией локальных решений. Этот метод представляет, по существу, разложение сложных систем на простые с применением теорем об условных вероятностях и условных распределениях. При этом вначале вычисляются показатели надежности более простых подсистем, а затем полученные результаты группируются с целью получения характеристик всей системы в целом.

Анализ возможных отказов проводят с целью выявления возможных причин их возникновения, оценки вероятности возникновения, времени возникновения, выбора методов обнаружения и регистрации, определения последствий отдельных видов отказов и разработки предупредительных, контрольных и защитных мероприятий по обеспечению надежности и безопасности на стадиях эксплуатации и проектирования систем.

При определении границ системы требуется тщательно установить начальные состояния элементов. Все элементы, которые имеют более одного рабочего состояния, создают различные начальные условия. Например, начальное количество жидкости в баке может быть регламентировано. Событие "бак полный" становится одним начальным состоянием, а "бак пустой" является другим состоянием. Необходимо также точно установить рабочий отрезок времени: например, условия при пуске и остановке могут создавать другого рода опасные условия, отличающиеся от установившихся режимов работы.

Когда достаточное количество информации по системе собрано, можно составить описания вариантов развития процесса (сценариев) и определить конечные события. Затем устанавливают причинные взаимосвязи, ведущие к каждому конечному событию, например при помощи дерева отказа.

Обычно система изображается в виде блок-схемы, показывающей все функциональные (или причинные) взаимосвязи и элементы. При ее построении исключительно важную роль приобретает правильное задание граничных условий, которые не следует путать с физическими границами системы.

Одним из основных требований, предъявляемых к граничным условиям, является задание завершающего (головного) нежелательного события, установление которого требует особой тщательности, поскольку именно для него, как для основного отказа, выполняется анализ. Кроме того, чтобы проводимый анализ был понятен всем заинтересованным лицам, исследователь обязан составить перечень всех допущений, принимаемых при определении системы и построении порядка исследования.

Обычно для каждой системы строят несколько маршрутов развития завершающего (опасного) события. Впоследствии они могут быть и связаны, но на этапе анализа с ними работают отдельно. Аналогично, если система функционирует в различных режимах, то может понадобиться анализ развития опасных состояний для каждого из режимов.

ПОНЯТИЕ И МЕТОДОЛОГИЯ КАЧЕСТВЕННОГО И КОЛИЧЕСТВЕННОГО АНАЛИЗА ОПАСНОСТЕЙ И ВЫЯВЛЕНИЯ ОТКАЗОВ СИСТЕМ

Безопасность - проблема многоплановая, которая должна быть разрешена известными способами до того, как отсутствие правильного решения приведет к профессиональному заболеванию, несчастному случаю или аварии.

Первый шаг к ликвидации опасностей состоит в их выявлении, т.е. идентификации. Инженер обязан уметь это делать. Он должен определить потенциальные источники опасности, которые могли и не вызвать аварий до сих пор; выявить опасности, которые маловероятны, но которые могут привести к серьезным последствиям; устранить из рассмотрения опасности, которые практически неосуществимы.

Оценивание каждой опасности включает изучение вероятности ее появления, а также серьезности травм персонала, повреждений систем, зданий и пр. компонентов производства, а также экологического ущерба, к которым может привести авария. Опасности должны быть сравнимы, это необходимо для их ранжирования. Для успешного анализа опасностей необходимо провести и изучение контрмер по отношению к каждой из опасностей, что добавляет еще одно направление при проведении анализа, так как в последующем принимаемые решения будут связаны с компромиссами среди альтернативных решений.

Чтобы способы обеспечения безопасности стали реальностью, необходимо использовать определенные процедуры или отдельные действия:

- идентификация опасностей, их анализ и оценка;

- логические процедуры формулирования предупредительных мероприятий (контрмер);

- выбор лучшей контрмеры для внедрения (принятие решения).

Проблема безопасности решается выбором метода, который дает более выгодное решение при несовершенных исходных данных.

Методы анализа основаны на качественном и количественном подходах к оценке опасностей.

Качественный анализ системы, как правило, предшествует количественному. Например, измерениям должна предшествовать стадия идентификации опасностей, выполняемая только на основе качественного анализа опасностей, который ведется просмотром изучаемой системы. Задача - выделить проблемы безопасности, нуждающиеся в более подробном рассмотрении. В любых отраслях промышленности можно выявить источники повышенной опасности или (и) ненадежные компоненты эксплуатируемой системы.

В технике и технологиях встречаются разнообразные опасности и если они характеризуются высокими температурами, большими скоростями и давлениями, то опасные точки обнаружить относительно просто. Чаще это достигается качественным анализом.

Кроме идентификации опасностей, качественная оценка существенна и при выборе альтернативных средств усовершенствования системы для ликвидации опасностей и достижения безопасности, а в проектируемых системах это выразится в форме разработки альтернатив для выполнения требований, предъявляемых к системе, необходимых инструкций и организационных мероприятий и прочих мер, определяемых принципами и методами обеспечения безопасности. Обилие возможностей при выборе контрмер безопасности также обусловливает применение качественного анализа.

Качественные оценки ведутся по более грубой шкале, чем количественные, поскольку человек не может учесть более четырех - пяти факторов одновременно в одной задаче.

Качественные методы анализа допускают использование полуколичественных оценок (больше, меньше), определенное ранжирование, например, по частоте встречающихся событий (никогда, редко, часто) или по сумме ущерба от аварий.

При качественном анализе используются специальные формы, технические стандарты и утвержденные нормы безопасности. Его результаты приводят к последующим задачам оптимизации, осуществляемым количественными методами.

Количественные методы анализа эффективны при сравнении сопоставимых опасностей системы в конкретном интервале времени. Недостаточная эффективность в других случаях объясняется тем, что неизвестно будущее состояние системы. Однако это не исключает количественных методов для оценки и прогнозирования состояния системы.

Количественные методы эффективны по следующим причинам:

- оценки будущих характеристик системы могут выполняться по характеристикам компонентов системы. Оценки на этом уровне более точны, а их погрешности меньше влияют на результат;

- оценки могут выполняться различными лицами, так что для каждого вида оценок может быть привлечен наиболее квалифицированный специалист;

- оценки могут осуществляться методом последовательного приближения, причем при каждом пересчете можно изучать влияние изменения исходных данных.

Применение количественных методов анализа требует в первую очередь выбора группы критериев или отдельного критерия, определенного как мера для сравнения количественных показателей исследуемой операции в отношении затрачиваемых усилий и получаемых результатов

Критерий должен отвечать следующим основным требованиям:

- иметь ясный физический смысл;

- быть определяющим и соответствовать основной цели функционирования системы, подсистемы или элемента;

- учитывать основные детерминированные и стохастические факторы, определяющие уровень безопасности системы;

- быть критичным к анализируемым параметрам и достаточно чувствительным к ним.

Классификация критериев включает.

А. Общие (интегральные) критерии, дающие наиболее полную оценку совершенствования системы (общее число возможных аварий и случаев травматизма, сумма затрат на создание системы безопасности).

Б. Условные (косвенные) критерии, отражающие одно из свойств системы путем отнесения его к некоторому показателю (стоимость получения единицы конечной продукции, вероятность безотказной работы определенного комплекса защитных мер, вероятность возникновения аварийной ситуации в определенном промежутке времени).

В. Относительные (нормированные) критерии, характеризующие безопасность системы в отношении оснащенности и эффективности средств защиты (отношение времени воздействия опасного фактора к общему времени работы, сопоставление экономической эффективности внедрения различных средств защиты, изменение уровня безопасности по сравнению с внедрением).

Количественный анализ возможен на основе методов объективного измерения и прогнозирования последствий опасности.

При проведении количественного анализа необходимо оценивать полноту и достоверность исходных данных, адекватность и точность используемых схем, обоснованность принимаемых допущений и зависимость от них получаемых рекомендаций и выводов.

При выборе окончательных решений необходимо проводить оценку гарантий, обеспечиваемых количественным анализом, а также рассматривать возможное повышение этих гарантий, применяя технические критерии, нормы и правила, позволяющих в совокупности обеспечить требуемую высокую надежность и безаварийность техники.

По результатам количественного анализа могут быть проведены корректирование перечня возможных отказов и ранжирование причин отказов систем. В перечень вводятся критические виды отказов, которые имеют наибольшую вероятность появления, а также отказы, анализ которых затруднен.

Методы анализа, основанные на качественном и количественном подходах и применяемые на различных стадиях проектирования и эксплуатации технологического оборудования, существенно зависят от целей анализа. При этом элементы одних методов могут быть использованы для усиленной реализации других методов. Так, например, метод "дерева отказов" может быть использован на этапах проектирования и эксплуатации как для качественного, так и для количественного анализа безопасности системы.

Учитывая вышеизложенное, трудно дать строгую классификацию этих методов. Поэтому будем придерживаться следующей схемы. Вначале рассмотрим методы идентификации опасностей (предварительный анализ опасностей - ПАО), а затем детальный анализ.

Причины каждого из возможных отказов определяют дополняющими друг друга методами анализа. Имеется два подхода при анализе причинных связей: прямой анализ и анализ с обратным порядком.

Анализ с прямым порядком начинается с определения перечня отказов и развивается в прямом направлении с определением последствий этих событий ("снизу вверх").

Анализ с обратным порядком начинается с определения опасного состояния системы, от которого в обратном направлении прослеживаются возможные причины возникновения этого состояния (развивается "сверху вниз").

При построении дерева событий (ДС), проведении анализа вида и последствий отказа (АВПО), анализа критичности (АК) используется прямой порядок. Обратный - для анализа с помощью деревьев отказов (ДО). Для предварительного анализа опасностей (ПАО) используется как прямой подход, так и обратный. Такое комбинированное использование обоих подходов необходимо, чтобы полностью решить задачу анализа риска и надежности систем.

При выполнении анализа в прямом порядке принимается ряд определенных последовательностей событий и составляются соответствующие этим последствиям сценарии, оканчивающиеся опасными состояниями системы. При этом задается вопрос: к какому событию в процессе работы системы (ее элементов) приводит отказ элемента следующего уровня системы, например: "Что случится, если разорвется трубопровод системы охлаждения реактора?" При анализе с прямой последовательностью оказываются полезными контрольные перечни возможных состояний элементов. Информация, которая должна быть собрана и обработана для рассмотрения ситуации (сценария), состоит из сведений по взаимосвязи элементов и топографии системы, а также включает данные по отказам элементов и другим детальным характеристикам системы. Эти сведения будут полезны и для построения дерева отказов.

Обратный подход, т.е. анализ с помощью дерева отказов, используется при определении причинных связей, ведущих к данному опасному состоянию системы. Само опасное состояние становится конечным событием дерева отказов. При этом задается вопрос: по каким причинам может произойти отказ системы, например: "Каким образом может отказать электропитание насоса, подающего охлаждающую жидкость в систему охлаждения реактора?" Данное конкретное конечное событие является лишь одним из многих возможных опасных состояний системы, представляющих интерес для анализа; ДОсамо по себе не выявляет возможных опасных событий в системе. Большие системы могут иметь много самых различных конечных событий и соответствующих им деревьев отказов.

Прямая логика часто называется индуктивной; логика, используемая при обратном порядке анализа систем, называется дедуктивной.

13. Методы исследования опасностей (дерево отказов, дерево решений)


Дата добавления: 2018-02-15; просмотров: 799; ЗАКАЗАТЬ РАБОТУ