Мера средней тенденции: определение, основные виды с примерами, место и роль в изучении собранных данных, основные направления работы с ними.



Оказывается, что даже для одномерных случайных величин можно найти целый ряд статистических закономерностей. Конечно здесь они довольно примитивны (скажем, мы не можем говорить о связях между переменными), но все же это - статистические закономерности. В первую очередь мы имеем в виду так называемые меры средней тенденции, наиболее употребительным квантилем является медиана. Подчеркнем лишь, что каждая из этих мер – некоторое значение (единственное!) рассматриваемого признака, которое должно характеризовать, как бы подменять, всю нашу совокупность. Напомним, что названные средние являются параметрами распределения вероятностей.

Все описываемые ниже меры средней тенденции являются "хорошими" выборочными точечными оценками генеральных параметров (напомним, что "хорошей" оценкой в математической статистике называются оценки, являющиеся несмещенными, состоятельными, эффективными

дает исследователю возможность с наибольшей вероятностью избежать сильного отклонения наблюденного значения статистики от соответствующего генерального параметра).

Пусть x1, x2, ..., xN – выборочные значения рассматриваемого признака (N – объем выборки). Статистикой, отвечающей математическому ожиданию среднее арифметическое значение признака:

Среднее арифметическое значение признака, вычисленное для какой-либо группы респондентов, чаще всего интерпретируется как значение для наиболее типичного для этой группы человека, это среднее значение как бы служит "олицетворением" этой группы (по качеству, связанному с рассматриваемым признаком). Однако бывают случаи, когда подобная интерпретация среднего арифметического несостоятельна. (подробнее в учебнике)

Квартили:

Децили:

Процентили:

Медианой называется Мe = Q2 = D5 = Р50.

медиана – это значение рассматриваемого признака, которое делит отвечающий этому признаку вариационный ряд (т.е. последовательность значений признака, расположенных в порядке их возрастания) пополам. Иначе говоря, медиана обладает тем свойством, что половина всех выборочных значений признака меньше нее, а половина – больше. "Правомочность" медианы в качестве представителя анализируемой группы респондентов представляется очевидной

Нетрудно видеть, что вычисление медианы имеет смысл только для порядкового признака (и, конечно, для интервального, поскольку любая интервальная шкала является порядковой).

В случае же, когда медиана вычисляется как середина между двумя шкальными значениями, мы делаем фактически еще одно предположение – о том, что наш порядковый признак в принципе может принимать значения, лежащие между используемыми пунктами шкалы.

Можно рассчитывать медиану и с помощью построения кумуляты. Это также опирается на предположение о непрерывности рассматриваемого признака. Более того, здесь работает еще одно модельное предположение: объекты внутри каждого интервала распределены равномерно.

Модой называется наиболее часто встречающееся значение признака. Нахождение моды обычно не представляет трудностей. Ясно, что ее можно рассчитывать для признаков, измеренных по шкалам любых рассматриваемых нами типов.

Приведем пример. Сравнивая, скажем, распределение по профессиям, рассчитанные для двух регионов – Ивановской и Тюменской области, мы можем придти, например, к выводу, что в первой наиболее распространенная профессия – ткачиха, а во второй – нефтяник. Этот вывод означает, что ткачиха – модальное значение профессии для жителей Ивановской области, а нефтяник – для Тюменской. И соответствующее первичное описание этих областей, т.е. как бы условное отождествление первой области с ткачеством, а второй – с добычей нефти, является вполне естественным.

Для того, чтобы имел смысл расчет медианы и других квантилей, шкала, как мы уже упоминали, должна быть по крайней мере порядковой. Легко показать, что все выводы на базе анализа квантилей останутся без изменения, если к исходным данным применить монотонно возрастающее преобразование (допустимое преобразование порядковых шкал).

 

5.Одномерное частотное распределение: определение, виды представления, пример, место и роль в изучении собранных данных, основные направления работы с ним.Совокупность частот встречаемости всех значений признака, трактуется как выборочное представление функции плотности того распределения вероятностей, которое и задает изучаемую случайную величину.

Пусть, например, вопрос в используемой социологом анкете звучит: “Какова Ваша профессия ?” и сопровождается 5-ю вариантами ответов, закодированных числами от 1 до 5. Тогда частотное распределение - аналог функции плотности - будет иметь, например, вид:

Таблица 1. Пример одномерной частотной таблицы

Значение признака 1 2 3 4 5
Частота встречаемости (%) 20 15 25 10 30

 

распределения (рис. 4). Вместо процентов могут фигурировать доли: 20% заменится на 0,2, 15 - на 0,15 и т.д. То же частотное распределение можно выразить по-другому, в виде диаграммы вида (полигон)

Подчеркнем, что здесь линии, связывающие отдельные точки, проведены лишь для наглядности, никакой содержательный смысл за ними не стоит

Рассмотрим проблемы, которые возникают при построении одномерных частотных таблиц. \Во-первых, соответствующие положения фактически задействованы (иногда в неявном виде) почти во всех методах анализа, в том числе и рассчитанных на номинальные данные.

Во-вторых, хотя номинальные данные являются основным предметом изучения социолога, решение большинства задач эмпирической социологии требует “увязки” процесса такого изучения с анализом данных, полученных по шкалам высоких типов. Объясняется это тем, что именно по таким шкалам измеряются столь важные для социолога характеристики респондентов, как возраст респондента, его зарплата и т.д.

В-третьих, хотя в литературе имеется немало работ с описанием методов статистического анализа “числовых” данных, однако при этом не всегда достаточно подробно анализируются многие их аспекты, важные для социолога-практика (например, редко затрагивается проблема разбиения диапазона изменения признака на интервалы или проблема пропущенных значений).  В социологической практике интервальность шкалы обычно сопрягается с ее непрерывностью, т.е. с предположением о том, что в качестве значения интервального признака в принципе может выступить любое действительное число, любая точка числовой оси.

Непрерывную кривую в выборочном исследовании нельзя получить никогда. Здесь мы не можем иметь, скажем, линию, похожую на известный “колокол” нормального распределения. Причина ясна: наша выборка конечна. Даже если в генеральной совокупности распределение, к примеру, нормально, а выборка - репрезентативна, мы вместо “колокола” получим лишь некоторое его подобие, составленное, например, из отрезков, соединяющих отдельные точки - полигон распределения (рис. 3). Заменяющая непрерывное распределение ломаная линия может состоять также из “ступенек”, в таком случае она называется гистограммой

Если мы хотим получить новое знание с помощью анализа сравнительно небольшого количества наблюденных значений рассматриваемого признака, мы должны “сжать” исходные данные путем разбиения диапазона изменения значений этого признака на интервалы. За счет потери одной информации, мы приобретаем другую. Как строить гистограмму с неравными интервалами? Способ построения такой гистограммы опирается на только что сформулированное положение о площадях составляющих гистограмму прямоугольников. На примере опишем соответствующий алгоритм.Предположим, что частотная таблица, на базе которой мы хотим построить гистограмму, отвечающую распределению нашей совокупности респондентов по возрасту, имеет вид, отраженный в таблице 2. .Таблица 2 Частотное распределение респондентов по возрасту

Интервал изменения возраста [15 - 20) [20 - 50) [50 - 55) [55 - 80)
Количество респондентов, попавших в интервал 80 90 20 10

 

Подчеркнем, что предлагаемое разбиение на интервалы представляется нам разумным для некоторых задач - скажем, в том случае, если мы особенно интересуемся категориями женщин, с одной стороны, думающих о вступлении в фазу трудовой деятельности и вступающих в нее (15 - 20 лет) и, с другой стороны, - собирающихся покинуть эту фазу (50-55 лет) (заметим, что людей старше 80-ти лет в нашей совокупности нет).

Итак, алгоритм состоит в следующем. Выбираем какой-то интервал диапазона изменения возраста за единицу и считаем, что на нем высота столбца гистограммы равна проценту людей, попавших в этот интервал. Для гистограммы, изображенной на рис. 7 - это интервалы [15 - 20) и [50 - 55). Другими словами, мы выбрали за единицу интервал длиной в 5 лет. Для интервалов, имеющих другую длину, высоту столбца гистограммы будем полагать равной результату деления величины процента попавших в него людей на длину интервала. Так, интервал [50 - 55) имеет длину в 6 наших единиц. В него попали 45% респондентов. Поделим 45 на 6 . Получится 7,5%. Именно такой высоты столбец и будет отвечать рассматриваемому интервалу. Так же поступим с интервалом [55 - 80). В него попало 5% респондентов, а длина его равна 5 единицам. Значит, высота соответствующего столбца равна 50:5 = 1 %.оценка должна базироваться на анализе не высоты столбцов, а их площади!

Кумулята. Выборочным представлением собственно функции распределения (а не плотности) случайной величины, “стоящей” за рассматриваемым признаком, служит т.н. кумулята распределения, или график накопленных частот. Она обычно представляется в виде полигона, каждая вершина которого отвечает относительной частоте того, что признак принимает значение, не превышающее того, над которым эта вершина находится. Нетрудно понять, что кумулята получается из описанного выше полигона распределения путем последовательного суммирования определяющих его частот.

СОЦИОЛОГИЯ УПРАВЛЕНИЯ


Дата добавления: 2018-02-15; просмотров: 914; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!