ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕПЛОПРОВОДНОСТИ



Температурное поле

Теплопроводность представляет собой процесс распростра­нения энергии между частицами тела, находящимися друг с дру­гом в соприкосновении и имеющими различные температуры.

Рассмотрим нагрев какого-либо однородного и изотропного те­ла (в дальнейшем будем рассматривать только такие тела). Изотропным называют тело, обладающее одинаковыми физическими свойствами по всем направлениям. При нагреве такого тела тем­пература его в различных точках изменяется во времени и теплота распространяется от мест с более высокой температурой к местам с более низкой температурой. Из этого следует, что в общем случае процесс передачи теплоты теплопроводностью в твердом теле сопро­вождается изменением температуры как в пространстве, так и во времени, т. е.

 (22-1)

где t — температура тела;

х, у, z — координаты точки;

τ — время.

Эта функция определяет температурное поле в рассматриваемом теле. В математической физике температурным полем называют совокупность значений температуры в данный момент времени для всех точек изучаемого пространства, в котором протекает процесс.

Если температура тела есть функция координат и времени, то температурное поле тела будет нестационарным, т. е. зависящим от времени:

 (22-2)

Такое поле отвечает неустановившемуся тепловому режиму теп­лопроводности.

Если температура тела есть функция только координат и не из­меняется с течением времени, то температурное поле тела будет стационарным:

 (22-3)

Уравнение двухмерного температурного поля для режима: ста­ционарного

Нестационарного

На практике встречаются задачи, когда температура тела яв­ляется функцией одной координаты, тогда уравнение одномерного температурного поля для режима:

нестационарного

стационарного

 (22-4)

Одномерной, например, является задача о переносе теплоты в стенке, у которой длина и ширина бесконечно велики по сравне­нию с толщиной.

 

Температурный градиент

Если соединить точки тела с одинаковой температурой, то полу­чим поверхность равных температур, называемую изотермической. Изотермические поверхности между собой никогда не пересекаются.

Они либо замыкаются на себя, либо кон­чаются на границах тела.

Рассмотрим две близкие изотермические поверхности с температурами t и t + Δt (рис. 22-1). Перемещаясь из какой-либо точки А, можно обнаружить, что интенсив­ность изменения температуры по различ­ным направлениям неодинакова. Если пе­ ремещаться по изотермической поверхно­сти, то изменения температуры не обна­ружим. Если же перемещаться вдоль какого-либо направления S, то будет наблюдаться изменение температуры. Наибольшую разность температур на единицу длины будем наблюдать в направлении нор­мали к изотермической поверхности. Предел отношения изменения температуры Δt к расстоянию между изотермами по нормали Δn, когда ан стремится к нулю, называют градиентом температуры:

 (22-5)

Температурный градиент есть вектор, направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно равный производной от температуры по нормали п. За положительное направление градиента принимается направление возрастания температур.

 


Дата добавления: 2018-02-15; просмотров: 721; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!