О некоторых способах подкисленная крови 6 страница




 


 


Кислоты в этой таблице перечислены в порядке возрастания их силы. Сила кислот определяется их константами диссоциации — силь­нее та кислота, у которой больше константа диссоциации.

Другой формой содержания .угольной кислоты в воде являются гидрокарбонаты, образующиеся при диссоциации угольной кислоты по 1-ой ступени (Н2СОз.«-» Н+ + НСОз"), а также при диссоциации гидро­карбонатных солей, образующихся в результате растворения карбо­натных пород под действием угольной кислоты:

СаСОз + СО2 + Н2О = Са +2 + 2НСО3"

Гидрокарбонаты — наиболее распространенная форма содержа­ния угольной кислоты в природных водах при средних значениях рН. Они обуславливают щелочность воды и это нам прежде всего необхо­димо помнить.

Еще угольная кислота может содержаться в карбонат-ионах (СОз2"), образующихся при диссоциации угольной кислоты по 2-й сту­пени: НСОз" <-> Н+ + СОз2". Карбонат-ионы содержатся только в ще­лочной среде (при рН>8,4). Но в присутствии ионов кальция содержа­ние СОз2" бывает небольшим вследствие малой растворимости кар­боната кальция (СаСОз). А при наличии в растворе свободной уголь­ной кислоты растворимость карбоната кальция возрастает в результа­те образования гидрокарбонатов, как об этом и было сказано чуточку выше.

Одновременно все формы угольной кислоты в растворе присут­ствовать, не могут, наиболее вероятными и устойчивыми системами яв­ляются СО2 + НСО3" и НСО3" + СО32;. А какая из этих систем будет преобладать — зависит только от концентрации ионов водорода в растворе. На концентрацию ионов водорода может оказывать суще­ственное влияние концентрация ионов кальция в растворе. '

Основная карбонатная система природных вод представляет со­бой систему из свободной угольной кислоты и гидрокарбонат-ионов. От соотношения этих форм зависит рН природных вод. Например, при низких значениях рН (< 4,2) в воде присутствует практически только свободная угольная кислота, а повышение рН (от 4,2 до 8,35) проис­ходит при снижении концентрации свободной угольной кислоты в рас­творе и одновременном повышении гидрокарбонатов. При рН больше 8,35 в воде практически отсутствует свободная угольная кислота и остаются только гидрокарбонат-ионы. Но зависимость рН от соотно­шения различных форм угольной кислоты в растворе можно рассмат­ривать и по иному — и как зависимость содержания различных форм угольной кислоты от рН раствора.

                                       50


 

Угольная кислота в форме карбонат-ионов называется связанной. Принято считать, что гидрокарбонаты наполовину состоят из связан­ной и свободной угольной кислоты, так как при разложении они дают карбонаты (связанную) и свободную угольную кислоту: 2НСО3- -> СО2 + СО32" + Н2О.

Если в водном растворе одновременно присутствуют свободная угольная кислота и гидрокарбонаты, то в состоянии равновесия опре­деленному содержанию гидрокарбонат-ионов соответствует вполне определенное количество свободной угольной кислоты, которую назы­вают равновесной угольной кислотой.

Если содержание свободной угольной кислоты в растворе будет меньше равновесного с гидрокарбонатами:

Са2++ 2НСО3-> СО2 + СаСОз + Н2О         (2.1),
то (по принципу Ле Шателье) равновесие смещается вправо, гидрокарбонат-ионы разрушаются с образованием свободной угольной
кислоты и карбонат-ионов. Но избыток карбонат-ионов легко взаимо­действует с ионами кальция (Са2+), содержащимися в растворе, с об­разованием труднорастворимого карбоната кальция (СаСОз).

Результаты этого неравенства (2.1) мы можем увидеть на дне озе­ра Севан в Армении — поступающая в это озеро вода содержит мно­го гидрокарбонат-ионов и ионов кальция, а поэтому в нем постоянно происходит образование нерастворимого карбоната кальция, который и оседает на дно.

Если же свободной угольной кислоты в водном растворе будет больше, чем необходимо для состояния равновесия —

Са2 + 2НСО3" < СО2 + СаСО3 + Н2О         (2.2),

то часть свободной угольной кислоты будет взаимодействовать с карбонатом кальция и переводить его в растворимый гидрокарбонат

51


кальция. Такая реакция постоянно происходит в природных водах, со­прикасающихся с почвами, содержащими в себе много известняков.

В крови, которая более чем на 90% состоит из воды, угольная кислота ведет себя точно так же, как и в любом водном растворе, а поэтому все приведенные выше рассуждения о соотношении различ­ных форм этой кислоты применимы и для крови. Кстати сказать, в фи­зиологии также принято считать, что весь растворившийся в крови уг­лекислый газ существует в ней в виде угольной кислоты и поэтому кон­станту диссоциации принимают не 'истинную, а 'кажущуюся.

Здесь следует заметить, что общее количество углекислого газа, переносимого кровью, бывает намного больше того, которое раство­ряется в крови. Примерно 10% углекислого газа транспортируется в виде карбогемоглобина (его соединение с гемоглобином), примерно 3% в растворенном виде, а большая часть — в виде гидрокарбонатов. Угольная кислота, образующаяся в крови при растворении в ней угле­кислого газа, — очень слабая кислота, но в какой-то мере она все же подкисливает кровь. Постепенно в процессе эволюции человеческий ор­ганизм приспособился к определенной реакции крови, которую можно принять за оптимальную. При такой реакции крови должны нормально функционировать все системы организма, а также должен нормально идти весь процесс обмена веществ в нем. Но если по какой-то причи­не реакция крови изменится не в лучшую сторону и организм не смо­жет самостоятельно вернуться к оптимальной реакции, то при этом нарушится процесс обмена веществ в организме и возникнут, как об этом и говорит нам автор метода ВЛГД, многие болезни. И здесь нам предлагают предпринять самое простое действие по исправлению та­кого неблагоприятного положения — задержать волевыми усилиями уг­лекислый газ в организме и повысить, таким образом, его концентра­цию в крови. И повысить тем самым подкисление крови. Сам организм этого сделать не может, так как дыхательный центр подает команду только по верхнему уровню углекислого газа в крови, а по нижнему такая команда не предусмотрена, так как в процессе жизнедеятель­ности организма в нем постоянно образуется этот газ и требуется только своевременно выбрасывать его, но никак не накапливать.

Итак, нам постепенно становится ясно, что по какой-то причине реакция крови у людей изменяется не в лучшую сторону, в результате чего и возникают всевозможные заболевания. И если в этот момент (в момент, когда мы имеем одно или несколько заболеваний) нам удастся задержать какую-то часть углекислого газа в организме и тем самым дополнительно подкислить кровь, то в результате этого действия наступает выздоровление. И хотя в данном случае мы наблюдаем прямую связь между повышением концентрации углекислого газа в альвеолярном воздухе и последующим выздоровлением, но все же должны признать, что не углекислый газ сам по себе оказывает ре-

52


шающее влияние на все жизненные функции организма, как об этом говорит нам автор метода ВЛГД. Решающую роль для нормального функционирования и организма в целом, и всех его клеток в отдель­ности играет концентрация ионов водорода в крови. А концентрация ионов водорода в крови определяет реакцию крови. Но каким спосо­бом будет достигнута необходимая концентрация ионов водорода в крови — по сути не имеет значения. И углекислый газ в таком случае, а точнее, углекислота, создаваемая этим газом при его растворении в крови, может находиться в одном ряду со всеми другими кислотами, которые также могут повысить концентрацию ионов водорода в крови.

Здесь нам, по-видимому, следует сделать небольшое отступление и вспомнить, что мы называем кислотой, и что щелочью, и какой вели­чиной мы измеряем кислотность или же щелочность растворов. Все это вроде бы скучные вещи, но, поверьте мне, их интересно знать, да я и не собираюсь долго занимать внимание читателей этими химическими понятиями — попытаюсь ограничиться только самой сутью их.

Кислотой мы можем называть любое вещество, способное отда­вать в раствор ионы водорода. И если мы пьем кислое вино, то могли бы знать, что кислые свойства ему придают только ионы водорода. А ионы водорода вину дают кислоты, растворенные в нем. И нам чаще всего не столь важно знать какие это" кислоты — нас больше интере­сует насколько кислое вино, можно ли его вообще пить. В более кис­лом вине и более высокая концентрация ионов водорода. Поэтому и кислотность растворов характеризуется концентрацией ионов водо­рода (Н+). Чем больше концентрация этих ионов — тем выше кислот­ность раствора.

Такое же простое определение как и кислотам можно дать и ще­лочам — это вещества, могущие связывать ионы водорода, имеющиеся в растворах, вследствие чего в растворах увеличивается концентрация ионов ОН". Последние делают растворы скользкими на ощупь и при­дают им горький вкус.

Но для характеристики реакции растворов используют не абсо­лютное число ионов водорода, так как в этом случае нам пришлось бы столкнуться с определенной проблемой — с огромными цифрами, с которыми трудно работать, а некоторый символ — рН.

Датский химик Сёренсон еще в 1909 году предложил очень про­стой способ оценки качества растворов в зависимости от концентра­ции в них ионов водорода — по некоей величине рН, которая опреде­ляется уравнением:

pН - -1од10[НЧ

Буква р — это начальная буква от датского слова ро!еп7 (степень), а буква Н — это символ водорода.

Поскольку в нейтральном растворе при 25°С концентрация ионов водорода [Н+] — ТО"7 моль/л, то для такого раствора

53


pН—log10[10-7]--(-7)-7.

И поэтому, когда мы говорим, что рН какого-то раствора равен 7, то легко понимаем, что речь идет о нейтральном растворе. А если кон­центрация ионов водорода в растворе возрастает, например, до ве­личины 1,0 • 10"4 моль/л, то рН такого раствора будет равен 4. Это кислый раствор. А если концентрация ионов водорода понизится по сравнению с нейтральным раствором до величины, например, 1,0 • 10"' моль/л, то рН такого раствора будет равен 9. Это щелоч­ной раствор, в нем преобладают ионы ОН'.

Как видите, величиной рН очень просто пользоваться: в кислых растворах рН меньше 7 (рН < 7), а в щелочных растворах рН больше 7 (рН > 7).

Повторно скажу, что величина рН — это не концентрация ионов водорода, а всего лишь некоторый символ, который принято называть водородным показателем.

Водородный показатель дает нам характеристику раствора (кислый, нейтральный или щелочной раствор), а также дает удобную для пользования шкалу кислотности или щелочности растворов. Но по величине рН мы можем определить и истинную концентрацию ионов водорода в растворе.

Концентрация ионов Н+ и ОН" в растворах взаимосвязаны: когда концентрация ионов водорода возрастает, то концентрация гидроксид-ионов понижается. В кислом растворе концентрация ионов водорода всегда больше, чем концентрация ионов ОН". В щелочном растворе, например, в растворе МаОН, наоборот, концентрация ионов ОН" вы­ше концентрации ионов Н+.

Нас в дальнейшем будет интересовать не истинная концентрация ионов водорода в крови, а рН крови (реакция крови). А по реакции крови мы всегда сможем судить и о концентрации ионов водорода, и об их соотношении с ионами ОН".

ЗАЧЕМ НАМ НУЖНЫ ИОНЫ ВОДОРОДА?

Еще в 1909 году Сёренсон первым указал на исключительное влияние ионов водорода на биологические реакции. Он же, как мы уже знаем, первым предложил оценивать кислотность растворов не по истинной концентрации ионов водорода в растворе, а по величине рН. Так в дальнейшем будем поступать и мы.

А теперь более внимательно посмотрим на ионы водорода, кото­рые находятся в нашем организме.

Наш организм состоит из множества клеток. Клетка — это самая элементарная единица, способная поддерживать жизнь, но в то же время она представляет собой весьма сложный объект. Клетка — это отдельный микромир, имеющий четкие границы, внутри которых су­ществует непрерывная химическая активность и непрерывный поток


энергии. Клетка имеет наружную мембрану, главная функция которой состоит в регулировании обмена различных веществ между клеткой и внешней средой.

Внутри клетка также с помощью мембран поделена на отдельные отсеки (компартменты). И чем, прежде всего, для нас интересны в дан­ный момент эти отсеки — так это разной концентрацией ионов водо­рода в каждом из них. То есть в каждом отсеке поддерживается не только кислая среда, но и с различной величиной рН, иногда ниже 4 единиц. А в целом наружная мембрана или клетка в целом несет на себе положительный электрический заряд. А чтобы создавать такие повышенные концентрации ионов водорода в отсеках — в каждой мембране имеются механизмы активного переноса ионов водорода из внеклеточной среды в эти отсеки, которые называются протонными помпами. Напомню здесь, что ионы водорода — это и есть в чистом виде протоны. А чтобы протонные помпы могли перекачивать ионы во­дорода — нужны по крайней мере сами ионы, а проще говоря, нужна подкисленная межклеточная среда, а такую среду может создать толь­ко подкисленная кровь. Так мы опосредованно пришли к выводу, что кровь обязательно должна содержать в себе достаточную концентра­цию ионов водорода.

Здесь, мне кажется, следует более зримо показать какая концент­рация ионов водорода может быть при различных реакциях среды, от­личающихся не только на целые единицы рН, но и на сотые доли, а также в каком соотношении ионы водорода находятся с гидроксид-ионами при разных реакциях крови. Например, рН питьевой воды мо­жет быть равным и 6, и 8 единицам. Что могут говорить нам эти циф­ры? Прежде всего следует сказать, что никого из нас и никогда эти цифры не интересовали. А в общем они говорят, что первая вода кис­лая, а вторая щелочная. И большинство из нас выберет щелочную во­ду, потому что она покажется более приятной на вкус, но правильный ли будет этот выбор с точки зрения не вкуса, а здоровья — нам еще предстоит разобраться в этом.

А как изменяется концентрация ионов, водорода при изменении реакции среды от 6 до 8? Оказывается, при рН 6 концентрация ионов водорода в 100 раз выше, чем при рН 8. Но и концентрация ионов водорода еще мало о чем нам говорит, ведь наряду с ионами водо­рода в растворах обязательно имеются гидроксид-ионы (ОН"). И уменьшение концентрации ионов водорода тут же приводит к увеличе­нию концентрации гидроксид-ионов, и наоборот. Поэтому более ин­формативным для нас будет соотношение Н+/ОН" при разных значе­ниях рН. При рН6 на 100 ионов водорода приходится только один гидроксид-ион, а при рН 8 уже на один ион водорода приходится 100 гидроксид-ионов. Как видим, и при щелочной реакции крови (рН 8) в ней еще имеются ионы водорода, но каждый из них находится в

55


'густом лесу, состоящем из ОН". Легко ли при таком соотношении ионов водорода и гидроксид-ионов протонным помпам найти и пере­нести внутрь клетки необходимое число протонов? Такой поиск можно сравнить только с поиском иглы в стоге сена. И именно при такой ре­акции крови (алкалоз) нас ожидает множество болезней.

Рассмотрим еще несколько соотношений между Н+ и ОН" при наиболее вероятных реакциях крови. Так, в учебнике по физиологии человека для медицинских институтов написано, что кровь имеет сла­бощелочную реакцию: рН артериальной крови равен 7,4, а рН веноз­ной, вследствие большого содержания в ней углекислоты, равен 7,35. Обратите внимание на последнюю цифру и сравните ее с предыдущей. Реакция венозной крови всего на 0,05 единиц меньше артериальной, а ведь она несет в себе весь тот углекислый газ, кото­рый непрерывно выделяется в нашем организме и через легкие выбра­сывается в атмосферу. Реакция венозной крови как раз и говорит нам о незначительных возможностях неглубокого дыхания (задержки неко­торого количества углекислого газа в организме) по подкислению кро­ви. И если по какой-то причине у нас будет высокая щелочность кро­ви, то вряд ли нам удастся исправить это негативное положение одним только изменением режима дыхания.

При реакции крови рН 7,4 на один ион водорода приходится шесть гидроксид-ионов. А при рН 7,35 на один ион водорода прихо­дится пять гидроксид-ионов. И в одном, и в другом случае в крови преобладают ионы ОН". Если же мы каким-либо способом понизим реакцию нашей крови всего на 0,2 (я имею в виду первоначальную реакцию крови в 7,4), то при рН 7,2 на один ион водорода будет при­ходится уже не шесть, а только два иона ОН". А если мы еще больше подкислим нашу кровь, чтобы ее реакция хотя и незначительно, но все же стала кислой, например, рН 6,95 — это совсем недалеко от нейтраль­ной реакции крови, то отношение Н+ к ОН" станет равным 5/4. Как видим, при такой реакции крови ионы водорода уже становятся хозяе­вами положения, да и концентрация их в крови увеличивается в три раза по сравнению с той, которая была при рН 7,4. Вот что в дей­ствительности дают, казалось бы, незначительные изменения рН на­шей крови.

Здесь я еще немного задержу внимание читателей на четырех разных реакциях крови и покажу количественно как отношение Н+/ОН" может сказываться на нашем здоровье. Реакции эти равны 6,0, 6,8, 7,4 и 8,0.

Если мы считаем, что реакция крови с рН 7,4 является нормаль­ной реакцией для нашей артериальной крови, то тогда следует счи­тать нормальным и такое отношение Н+/ОН", когда на один ион во­дорода приходится шесть ионов ОН".

56


Но если эту реакцию крови (рН 7,4), которую мы считаем нор­мальной, повысить всего на 0,6 единицы, то получим алкалоз (рН 8,0). А это не только очень болезненное состояние организма, но и почти безжизненное. А отношение Н+/ОН" при этом будет выглядеть как один к ста. То есть при таком соотношении между Н+ и ОН" протон­ные помпы просто не в состоянии будут найти в крови и перекачать внутрь клетки ионы водорода, хотя эти ионы и будут находиться в кро­ви. И в результате мы будем болеть. И это всего лишь при незначи­тельном сдвиге реакции крови в сторону повышения рН.

А теперь понизим рН крови (повысим концентрацию ионов водо­рода в ней) относительно так называемой нормальной реакции (относительно рН 7,4) и тоже всего лишь на 0,6 единицы. При такой реакции крови (при рН 6,8) наступает оздоровление организма (более подробно об этом говорится в следующей главе). А отношение Н+ к ОН" при этом будет выглядеть как 5 к 2. То есть ионов водорода в крови будет уже больше, чем ионов ОН", хотя и незначительно. Но прошу читателей обратить на это особое внимание, как при равном и незначительном сдвиге реакции крови в одну и в другую сторону от­носительно имеющейся у нас реакции крови (относительно рН 7,4), происходят очень большие изменения концентрации ионов Н"1" и ОН" в крови, что незамедлительно сказывается и на нашем самочувствии, и

на нашем здоровье.

Если мы продолжим подкисливать кровь, то ее реакция может по­низиться до рН 6,0. По медицинской терминологии это уже ацидоз, то есть кислая кровь. При такой реакции крови отношение Н+/ОН" рав­но 100 к 1. И если при рН 8,0 человек становится очень больным, то при рН 6,0 может происходить даже оздоровление организма челове­ка (более подробно об этом говорится в следующей главе).Уже одно такое краткое сравнение состояний нашего здоровья при четырех разных, но реальных для нас реакциях крови, говорит нам о большом влиянии концентрации ионов водорода в крови на наше здоровье.


Дата добавления: 2021-05-18; просмотров: 56; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!