Историческая справка. Доменная печь.



На протяжении многих веков железо добывалось в сыродутных печах способом, открытым еще в глубокой древности. Пока на поверхности земли в изобилии встречались легкоплавкие руды, этот способ вполне удовлетворял потребности производства. Но в средние века, когда спрос на железо стал возрастать, в металлургии все чаще пришлось использовать тугоплавкие руды.

Напомним, что железом, сталью и чугуном в металлургии называют собственно сплав химического железа с углеродом. Разница между ними заключается в количестве углерода: так, в мягком кричном (сварном) железе его не более 0,04%, в стали -до 1,7%, в чугуне - более 1,7%. Несмотря на то, что количество углерода варьируется в таких незначительных пределах, по своим свойствам железо, сталь и чугун очень отличаются друг от друга: железо представляет собой мягкий металл, хорошо поддающийся ковке, сталь, напротив, очень твердый материал, прекрасно сохраняющий режущие качества; чугун - твердый и хрупкий металл, совершенно не поддающийся ковке. Количество углерода заметно влияет и на другие свойства металла. В частности, чем больше его в железе, тем легче оно плавится. Чистое железо - достаточно тугоплавкий металл, а чугун плавится при гораздо более низких температурах.

Появление гидравлических двигателей и мехов надо относить к концу XIV века, так как уже в XV веке многие плавильни в связи с этим передвинулись с гор и холмов вниз - в долины и на берега рек. Это усовершенствование явилось исходным моментом для крупнейшего сдвига в технике металлургии, так как привело к открытию чугуна, его литейных и переделочных свойств. Действительно, усиление дутья сказалось на всем ходе процесса. Теперь в печи развилась такая высокая температура, что восстановление металла из руды происходило раньше, чем образовывался шлак. Железо начинало сплавляться с углеродом и превращаться в чугун, который, как отмечалось выше, имеет более низкую температуру плавления, так что в печи вместо обычной вязкой крицы стала появляться совершенно распл- авленная масса (чугун).

Сначала эта метаморфоза очень неприятно поразила средневековых металлургов. Застывший чугун был лишен всех природных свойств железа: он не ковался, не сваривался, из него нельзя было сделать прочных инструментов, гибкого и острого оружия. Поэтому чугун долгое время считали отбросом производства и плавильщики весьма враждебно относились к нему. Однако что же было с ним делать? При восстановлении железа из тугоплавких руд изрядная его часть уходила в чугун. Не выбрасывать же все это железо вместе со шлаком! Постепенно негодный чугун стали выбирать из остывшего шлака и пускать во вторую переплавку, сначала добавляя его к руде, а потом сам по себе. При этом неожиданно обнаружилось, что чугун быстро плавится в горне и после усиленного дутья легко превращается в кричное железо, которое по своему качеству не только не уступает, но даже по многим показателям лучше того железа, которое получали из руды. А так как чугун плавится при более низких температуре, передел этот требовал меньше топлива и занимал меньше времени.

Так в течении XV века, сначала бессознательно и ощупью, а затем вполне осознано, было сделано величайшее в металлургии открытие - переделочный процесс. Широкое применение он нашел уже в XVI веке в связи с распространением доменных печей. Вскоре в чугуне открыли и другие положительные свойства. Твердую крицу было нелегко достать из печи. На это обычно уходило несколько часов. Между тем печь остывала, на разогрев ее шло дополнительное топливо, тратилось лишнее время. Выпустить из печи расплавленный чугун было намного проще. Печь не успевала остыть и ее можно было сразу загружать новой порцией руды и угля. Процесс мог происходить беспрерывно. Кроме того, чугун обладал прекрасными литейными качествами. (Напомним, что на протяжении многих веков единственным способом обработки железа была ковка.)

Мысль о том, что процесс выделки железа можно разделить на две стадии (то есть в одной печи непрерывно выплавлять чугун, а в другой - переделывать этот чугун в железо), пришла не сразу. В блауофенах получали одновременно и железо, и чугун. Когда плавка заканчивалась, шлак выпускали через отверстие, расположенное ниже фурмы. После охлаждения его измельчали и отделяли корольки чугуна. Крицу вытаскивали большими клещами и ломом, а затем обрабатывали молотом. Наиболее крупные крицы весили до 40 пудов. Кроме того, из печи вытаскивали до 20 пудов чугуна. Одна плавка длилась 15 часов. На извлечение крицы требовалось 3 часа, на подготовку печи к плавке - 4-5 часов. Наконец пришли к идее двухступенчатого процесса плавки.

Усовершенствованные блауофены превратились в печь нового типа - доменную, которая предназначалась исключительно для получения чугуна. Вместе с ними был окончательно признан переделочный процесс. Сыродутный процесс стал повсеместно вытесняться двухступенчатым способом обработки железа. Сначала из руды получали чугун, потом, при вторичной переплавке чугуна- железо. Первая стадия получила название доменного процесса, вторая - кричного передела.

Древнейшие домны появились в Зигерланде (Вестфалия) во второй половине XV века. Конструкции их отличались от блауофенов тремя чертами: большей высотой шахты, более сильным воздуходувным аппаратом и увеличенным объемом верхней части шахты. В этих печах достигалось значительное повышение температуры и еще более длительная ровная плавка руды. Сначала строили домны с закрытой грудью, но вскоре открыли переднюю стенку и расширили горн, получив домну с открытой грудью. Такая доменная печь при высоте 4,5 м давала в день до 1600 кг чугуна.

Перерабатывали чугун в железо в кричном горне, сходном по устройству с сыродутной печью. Операция начиналась с загрузки древесного угля и подачи дутья. После того как древесный уголь разгорался вблизи сопла, клали чугунные чушки.

Под действием высокой температуры чугун плавился, капля за каплей стекал вниз, проходил через область против фурм и терял здесь часть углерода. В результате металл загустевал и из расплавленного состояния переходил в тестообразную массу малоуглеродистого железа. Эту массу ломами подымали к соплу. Под воздействием дутья происходило дальнейшее выгорание углерода, и вновь осевший на дно горна металл быстро делался мягким, легко сваривающимся. Постепенно на дне образовывался ком - крица весом 50-100 кг и больше, которая извлекалась из горна для проковки под молотом с целью уплотнения его и выдавливания жидкого шлака. Весь процесс занимал от 1 до 2 часов.

В сутки в кричном горне можно было получить около 1т металла, причем выход готового кричного железа составлял 90-92% веса чугуна.

Качество кричного железа было выше сыродутного, так как в нем содержалось меньше шлака. Переход от одноступенчатого (сыродутного) процесса

к двухступенчатому (доменному и кричному) позволил в несколько раз поднять производительность труда. Возросший спрос на металл был удовлетворен. Но вскоре металлургия встретилась с затруднениями другого рода. Выплавка железа требовала огромного количества топлива. За несколько веков в Европе было срублено множество деревьев и уничтожены тысячи гектаров леса. В некоторых государствах были приняты законы, запрещавшие бесконтрольную рубку леса. Особенно остро этот вопрос стоял в Англии. Из-за нехватки древесного угля англичане принуждены были большую часть необходимого им железа ввозить из-за границы. В 1619 году Додлей впервые применил в плавке каменный уголь. Однако широкому применению каменного угля препятствовало присутствие в нем серы, мешающей хорошей выделке железа. Очищать каменный уголь от серы научились только в 1735 году, когда Дерби нашел способ поглощать серу с помощью негашеной извести при термической обработке угля в закрытых тиглях. Так был получен новый восстановитель - кокс.

Прокатка – одно из важнейших изобретений, сделанных человеком за время его многовекового знакомства с металлами. Уже давно было замечено, что изделия, имеющие одинаковое сечение по всей своей длине (например, рельсы, уголки, балки, листы, пруты) гораздо проще получать пропуская их между двумя валками, чем путем традиционной ковки. Можно даже сказать, что такой способ не только самый удобный, но и вообще наилучший. Без него не могло быть и речи о строительстве дешевых железных дорог, железных мостов, железных судов и еще многого и многого другого. Ведь именно благодаря прокатке появилась возможность придавать железным и стальным заготовкам полное единообразие. Нетрудно представить, скольких усилий потребовала бы от кузнеца, например, отковка каждого рельса или колеса железнодорожного вагона. Между тем, с помощью проката получить такие изделия несложно, притом в большом количестве и высокого качества. Поэтому уже в конце XVIII века прокатка стала одним из основных звеньев производственного цикла металлургических заводов, постепенно вытесняя ковку. А зародилась она еще в средние века при изготовлении тонких листов мягкого металла (например, свинца), которые можно было прокатывать вручную без предварительного нагрева.

Древнейшее изображение такого простого прокатного станка можно видеть на гравюрах 1615 года.

 

 

Рисунок 2  Непрерывно литые заготовки

В настоящее время готовую сталь разливают в формы (изложницы), где она застывает в виде слитков. Слитки перед прокатом помещают в специальные нагревательные колодцы для подогрева до необходимой температуры. Разогретый слиток стали обрабатывают первоначально на блюминге, придавая слитку форму болванки прямоугольного сечения, называемую блюмсом. Блюмс передают далее в прокатный стан, где он проходит через валки из ручья в ручей; при этом он вытягивается в длину и постепенно меняет форму, принимая по выходе из последнего ручья профиль заданных размеров. Полученную таким образом полосу затем разрезают на рельсы нормальной длины, производят выправку отдельных искривлений, высверливают отверстия для болтов.

Технология изготовления рельсов постоянно совершенствуется. Улучшен процесс изменения поперечного сечения блюмса в последовательно проходимых им ручьях прокатного стана (так называемая калибровка рельсов). При прокате по новой калибровке обеспечивается более интенсивная обработка металла подошвы рельсов, что резко сокращает количество волосовин в подошве, получающихся от раскатывания подкорковых пузырей.

Осуществлен ряд мер по удалению усадочной раковины и околоусадочной рыхлости металла. Введено замедленное охлаждение рельсов после проката взакрытых коробах и охлаждающих колодцах, позволяющее предупреждать образование флокенов. Очень важно, чтобы сталь не имела флокенов — мелких внутренних трещин, возникающих в связи с выделением водорода при остывании стали.

Существенное повышение качества рельсов даёт совершенствование способа раскисления рельсовой стали. В процессе варки стали происходит некоторое окисление железа. Для его восстановления в сталь добавляют алюминий. Но, соединяясь с кислородом, алюминий образует неметаллические включения (глинозем), загрязняющие сталь и снижающие стойкость рельсов против появления трещин.

Раскислителями являются комплексные ферросплавы, содержащие кремний, ванадий или магний и титан. Применение этих раскислителей повышает стойкость рельсов против появления трещин контактно-усталостного характера на 20...25%.

Повышение эксплуатационной стойкости рельсов достигается улучшением чистоты стали, термическим упрочнением и легированием.

Рисунок 3 Рельсы после проката

 

Рисунок  4 Технологическая цепочка изготовления рельсов

 

ТЕРМОУПРОЧНЕНИЕ СТАЛИ

Выполняется следующими способами:

· объёмная закалка с охлаждением в масле после печного нагрева;

· поверхностная закалка головки рельсов водовоздушной смесью после нагрева её токами высокой частоты;

· используется технология закалки рельсов в расплавах солей, заключающаяся в том, что рельсы нагреваются до температуры 840...870°С в проходной печи (40...60 мин), а затем охлаждаются (8... 40 мин) в расплаве солей калиевой селитры и нитрата натрия, содержащих 0,6...0,7% воды, до температуры 290...295 °С.

Последующее охлаждение рельсов происходит на воздухе. Остатки солей с поверхности рельсов смывают водой.


Дата добавления: 2020-11-15; просмотров: 83; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!