Потребности в источниках серы и фосфора



Сера входит в состав аминокислот (цистеин, метионин), витаминов и кофакторов (биотин, липоевая кислота и др.), а фосфор – необходимый компонент нуклеиновых кислот, фосфолипидов, коферментов. В природе сера находится в форме неорганических солей, главным образом сульфатов, в виде молекулярной (элементной) серы или входит в состав органических соединений. Большинство прокариот для биосинтетических целей потребляют серу в форме сульфата, который при этом восстанавливается до уровня сульфида. Однако некоторые группы прокариот не способны к восстановлению сульфата и нуждаются в восстановленных соединениях серы. Основной формой фосфора в природе являются фосфаты, которые и удовлетворяют потребности прокариот в этом элементе.

Ионы металлов

Всем прокариотным организмам необходимы металлы, которые могут использоваться в форме катионов неорганических солей. Некоторые из них (магний, кальций, калий, железо) нужны в достаточно высоких концентрациях, потребность в других (цинк, марганец, натрий, молибден, медь, ванадий, никель, кобальт) невелика. Роль перечисленных выше металлов определяется тем, что они входят в состав основных клеточных метаболитов и, таким образом, участвуют в осуществлении жизненно важных функций организма.

Потребность в факторах роста

Некоторые прокариоты обнаруживают потребность в одном каком-либо органическом соединении из группы витаминов, аминокислот или азотистых оснований, которое они по каким-то причинам не могут синтезировать из используемого источника углерода. Такие органические соединения, необходимые в очень небольших количествах, получили название факторов роста. Организмы, которым в дополнение к основному источнику углерода необходим один или больше факторов роста, называют ауксотрофами в отличие от прототрофов, синтезирующих все необходимые органические соединения из основного источника углерода.

Синтез прокариотами основных клеточных компонентов

Как уже отмечалось выше, основная масса органических веществ клетки состоит из полисахаридов, липидов, белков и нуклеиновых кислот, являющихся (за исключением липидов) полимерами. Образованию полимеров предшествует синтез составляющих их мономеров. В случае полисахаридов – это различные моносахара, нуклеиновых кислот – рибо- и дезоксирибонуклеотиды, белков – аминокислоты.

Биосинтез углеводов, липидов и аминокислот

Если прокариоты выращивать на средах, где источник углерода – одно-, двух- или трехуглеродные соединения, то необходимые сахара (в первую очередь С6) они должны синтезировать из имеющихся в среде источников углерода. У подавляющего большинства автотрофов на среде с СО2 в качестве единственного источника углерода сахара синтезируются в реакциях восстановительного пентозофосфатного цикла. У гетеротрофов на среде с С2- и С3-соединениями для синтеза необходимых сахаров используются в значительной степени реакции, функционирующие в катаболическом потоке, например в гликолитическом пути. Однако поскольку некоторые ферментативные реакции этого пути необратимы, в клетках гетеротрофных прокариот, способных использовать двух- и трехуглеродные соединения, сформировались специальные ферментативные реакции, позволяющие обходить необратимые реакции катаболического пути.

Процесс, обеспечивающий синтез С6-углеводов из неуглеводных предшественников, например аминокислот, глицерина, молочной кислоты, получил название глюконеогенеза. Таким путем, сочетающим использование имеющегося в клетке катаболического аппарата и специальных реакций, служащих только для биосинтетических целей, решается прокариотами проблема биосинтеза необходимых моносахаров.

У прокариот липиды входят в состав клеточных мембран клеточной стенки, служат запасными веществами, являются компонентами пигментных систем и цепей электронного транспорта. Ниже мы рассмотрим синтез жирных кислот и фосфолипидов, являющихся у большинства прокариот, относящихся к эубактериям, универсальным компонентом клеточных мембран.

С14–С18-жирные кислоты синтезируются путем последовательного присоединения двухуглеродных фрагментов к активированной С2-группе, выполняющей функцию затравки, и последующего восстановления окисленных углеродных атомов.

В клетках эубактерий компонентами липидов являются в основном насыщенные жирные кислоты или содержащие одну двойную связь (мононенасыщенные). Полиненасыщенные жирные кислоты, содержащие две и более двойных связей, найдены до сих пор только у цианобактерий. Образование двойных связей в молекуле кислоты может происходить двумя путями. Один из них, обнаруженный у аэробных эубактерий, требует участия молекулярного кислорода. У облигатно анаэробных и некоторых аэробных эубактерий двойные связи вводятся в молекулу кислоты на ранней стадии ее синтеза в результате реакции дегидратации.

Пути, ведущие к синтезу фосфолипидов, состоят из нескольких этапов. Исходным субстратом служит фосфодиоксиацетон (промежуточное соединение гликолитического пути), восстановление которого приводит к образованию 3-фосфоглицерина. К последнему затем присоединяются два остатка жирных кислот. Продуктом реакции является фосфатидная кислота. Активирование ее с помощью АТФ и последующее присоединение к фосфатной группе серина, инозита, глицерина или другого соединения приводят к синтезу фосфатидилсерина, фосфатидилинозита и фосфатидилглицерина соответственно.

Большинство прокариот способны синтезировать все аминокислоты, входящие в состав клеточных белков. В качестве исходных углеродных скелетов для биосинтеза аминокислот служит небольшое число промежуточных соединений различных метаболических путей. Введение в молекулу некоторых из них (щавелево-уксусной, а-кетоглутаровой, пировиноградной кислот) аминного азота приводит к образованию аспарагиновой, глутаминовой кислот и аланина. Однако в большинстве случаев исходные соединения должны подвергнуться значительным перестройкам, чтобы сформировать углеродный остов молекулы будущей аминокислоты.

Особенностью биосинтеза аминокислот является использование общих биосинтетических путей. Так, 19 из 20 аминокислот, разделить на 5 групп. Только одна аминокислота (гистидин) образуется по отдельному биосинтетическому пути. Азот вводится в молекулу аминокислоты посредством реакций аминирования, амидирования и переаминирования. Реакции аминирования приводят к образованию из пировиноградной кислоты аланина, а из а-кетоглутаровой – глутаминовой кислоты.

Глутаминовая кислота и глутамин прямо или косвенно служат донорами амино- и амидогрупп при синтезе практически всех аминокислот и других азотсодержащих органических соединений. Аспарагин используется только для синтеза белковых молекул. Во все остальные аминокислоты азот вводится посредством реакций переаминирования, катализируемых соответствующими аминотрансферазами, при этом во всех реакциях одним из участников является глутаминовая кислота.

Биосинтез мононуклеотидов

Из мононуклеотидов построены нуклеиновые кислоты (РНК, ДНК) клеток. Кроме того, мононуклеотиды входят в состав многих коферментов и участвуют, таким образом, в осуществлении различных каталитических функций. Центральное место в биосинтезе мононуклеотидов занимает синтез пуриновых и пиримидиновых азотистых оснований. Большинство прокариот способно к синтезу этих соединений de novo из низкомолекулярных предшественников. Синтез пуриновых и пиримидиновых мононуклеотидов осуществляется независимыми путями. В результате последовательных ферментативных реакций при синтезе пуриновых нуклеотидов образуется инозиновая кислота, из которой путем химических модификаций пуринового кольца синтезируются адениловая (АМФ) и гуаниловая (ГМФ) кислоты.

Первым пиримидиновым нуклеотидом, синтезируемым de novo, является оротидиловая кислота, декарбоксилирование которой приводит к образованию уридиловой кислоты (УМФ). Последняя служит предшественником цитидиловых нуклеотидов, но соответствующее превращение происходит только на уровне трифосфатов, поэтому сначала из УМФ образуется УТФ, аминирование которого приводит к возникновению ЦТФ.

Дезоксирибонуклеотиды образуются в результате восстановления соответствующих рибонуклеотидов на уровне дифосфатов (для некоторых прокариот описано подобное превращение на уровне трифосфатов). Синтез специфического для ДНК нуклеотида – тимидиловой кислоты – происходит путем ферментативного метилирования дезоксиуридиловой кислоты.

Многие прокариоты способны использовать содержащиеся в питательной среде готовые пуриновые и пиримидиновые основания, их нуклеозиды и нуклеотиды, имея ферменты, катализирующие следующие этапы взаимопревращений экзогенных пуриновых и пиримидиновых производных.

Глава 5. ЭНЕРГЕТИЧЕСКИЙ
МЕТАБОЛИЗМ ПРОКАРИОТ

Энергетические процессы прокариот по своему объему (масштабности) значительно превосходят процессы биосинтетические, и протекание их приводит к существенным изменениям в окружающей среде. Разнообразны и необычны в этом отношении возможности прокариот, способы их энергетического существования. Все это вместе взятое сосредоточило внимание исследователей в первую очередь на изучении энергетического метаболизма прокариот.

5.

Энергетические ресурсы

Организмы могут использовать не все виды энергии, существующей в природе. Недоступными для них являются ядерная, механическая, тепловая виды энергии. Чтобы тепло могло служить источником энергии, необходим большой перепад температур, который в живых организмах невозможен. Доступными для живых систем внешними источниками энергии (энергетическими ресурсами) являются электромагнитная (физическая) энергия (свет определенной длины волны) и химическая (восстановленные химические соединения). Способностью использовать энергию света обладает большая группа фотосинтезирующих организмов, в том числе и прокариот, имеющих фоторецепторные молекулы нескольких типов (хлорофиллы, каротиноиды, фикобилипротеины). Для всех остальных организмов источниками энергии служат процессы окисления химических соединений.

Часто энергетическими ресурсами служат биополимеры, находящиеся в окружающей среде (полисахариды, белки, нуклеиновые кислоты), а также липиды. Прежде чем быть использованными, биополимеры должны быть гидролизованы до составляющих мономерных единиц. Этот этап весьма важен по следующим причинам. Белки и нуклеиновые кислоты отличаются исключи тельным разнообразием. Количество видов белков исчисляется тысячами, после гидролиза же образуется только 20 аминокислот. Все разнообразие нуклеиновых кислот (ДНК и РНК) после гидролиза сводится к 5 видам нуклеотидов. Таким образом, расщепление полимеров до мономерных единиц резко сокращает набор химических молекул, которые могут быть использованы организмом.

Полимерные молекулы расщепляются до мономеров с помощью ферментов, синтезируемых и выделяемых прокариотами окружающую среду (экзоферментов). Крахмал и гликоген гидролизуются амилазами, гликозидные связи целлюлозы расщепляются целлюлазой. Многие бактерии образуют пектиназу, хитиназу, агаразу и другие ферменты, гидролизующие соответствующие полисахариды и их производные. Белки расщепляются внеклеточными протеазами, воздействующими на пептидные связи. Нуклеиновые кислоты гидролизуются рибо – и дезоксирибонуклеазами. Образующиеся небольшие молекулы легко транспортируются в клетку через мембрану.

Процесс распада жирных кислот локализован в клетке и включает несколько этапов.

Процесс расщепления биополимеров не связан с образованием свободной, т. е. доступной клетке, энергии[§§§].

Общее для всех катаболических путей – многоступенчатость процесса окисления исходного субстрата. На некоторых этапах окисление субстрата сопряжено с образованием энергии в определенной форме, в которой эта энергия может использоваться в самых разнообразных энергозависимых процессах.

Таким образом, внешние доступные организмам источники энергии (свет, химические соединения) должны быть трансформированы в клетке в определенную форму, чтобы обеспечить внутриклеточные потребности в энергии.


Дата добавления: 2019-09-13; просмотров: 219; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!