Тема 2.3. Структура типовой СиТД



На рис.3 представлена развернутая структура типовой СиТД.

Рисунок 3 – Структура типовой СиТД:

1 – датчики сиг­налов; 2 – линии связи с усилительными устройствами; 3 – коммутаторы; 4 – преобразователи; 5 – измерительный прибор; 6 – индикатор; 7 – дискриминатор; (устройство сравнения), 8 – поле допусков, вычисленные коэффициенты модели ОД;
9 – индикатор вида ТС (документирующее или запоминающее устройство);
10 – управляющее устройство, 11 – стимулирующее (воздействующее на ОД) устройство; 12 – прогнозирующее устройство.

Первичной подсисте­мой СТД является измерительное устройство, обеспечивающее заданную точность диагностирования. Так как измерительное устрой­ство, как правило, не может прямо измерять все виды параметров сигналов технической системы или ОД, составными элементами СТД являются такие устройства как коммутаторы и преобразователи.

На выходе измерительного устройства формируется информа­ция позволяющая определить техническое состояние объекта. Эта информация путем различных способов отображения может быть представлена оператору или может быть автоматически обработана для дальнейшего использования.

Важным элементом такой обработки является сравнение представленной информации с полем допусков для вынесения решения о виде ТС ОД.

После принятия решения о ТС ОД осуществляются еще две опера­ции: операция управления качеством изделия и операция стимулирования – изменения структуры ОД.

Прогнозирующее устройство способно определять состояние объекта в будущем посредством обработки информации о текущем и прошлом состояниях системы.

В результате работы функциональных подсистем СиТД, за каждой из которых стоит кон­кретная схемотехническая реализация, и воздействия на тракт помех и шумов, решения о виде ТС всегда выно­сятся с определенной ошибкой. Из опыта известно, что ошибки диагностирования могут быть допущены в основном из-за неисправности средства диагностирования и больших погрешностях измерений в процессе диагностирования. Этого можно попытаться избежать применением средств контроля и самодиагностики самих СТД.

Исходя из этого, правильное диагностирование ТС ОД будет определяться совокупным состоянием ОД и СТД, характеристиками измери­тельных устройств и устройства сравнения, а также правильности применяемых методов диагностирования.

Поэтому количественные характеристики показате­лей диагностирования должны быть пред­ставлены вероятностями состояний ОД и СТД, и вероятностями принятия решений о их ТС.

На количественное значение этих вероятностей в той или иной степени оказывают влияние все элементы структурной схемы тех­нического диагностирования. На погрешность точности измерения параметров сигналов в большей степени влияют:

1) выбор допусков на диапазон изменения диагностируемых па­раметров;

2) погрешности преобразования и измерительных приборов;

3) аддитивные (ступенчатые одиночные) и мультипликативные (повторяющиеся – шум) помехи, возникающие в самом ОД;

4) шумы в каналах связи и в цепях коммутации;

5) погрешности сравнения;

6) ошибки при принятии решения о ТС;

7) быстродействие системы;

8) ошибки, возникающие в наборе управляющих и стимулирующих сигналов.

Тема 2.4. Классификация технических средств диагностирования

Техническое диагностирование, как правило, осуществляется путем измерения и контроля количественных значений параметров энергосистемы и, возможно, качественных значений диагностических признаков, анализа и обработки результатов их измерения и контроля, а также путем управления объектами в соответствии с алгоритмом диагнос­тирования.

Диагностический признак – параметр ОД, используемый в установленном порядке (алгоритмом диагностирования) для определения технического состояния ОД.

Большое разнообразие ОД и задач ТД привело к тому, что в настоящее время используются СТД самых различных принципов построе­ния и назначения. Все эти средства отличаются способами техниче­ской реализации, конструктивным исполнением и расположением относительно объекта диагностирования, степенью автоматизации и универсальности, принципами воздействия на объект диагности­рования, формой обработки и представления информации о состо­янии объекта, режимами работы и рядом других признаков. Основ­ные из них указаны на рисунке 4.

Рисунок 4 – Классификация СТД

К аппаратурным СТД относят различ­ные устройства: приборы, пульты, стенды, специальные вычисли­тельные машины.

Аппаратурные средства, составляющие с объек­том диагностирования конструктивно и, возможно, функционально единое целое, являются встроенными аппаратурными средствами диагностирования.

Примерами подобных средств могут быть измеритель­ные приборы (частоты вращения, давления, температуры и т. п.), устройства индикации технического состояния элементов (реле, светоизлучающие диоды, неоновые лампы и т. п.), устройства конт­роля изоляции и другие, выстроенные в схемы управления дизелями, судовыми электрораспределительными щитами и т. д., часто с целью воздействия результатов диагностирова­ния на работу схем управления.

Если в схемах управления дизелями не предусмотрены встроенные средства диагностирования либо их оказывается недо­статочно для диагностирования с требуемой глубиной, то приме­няют внешние аппаратурные средства диагностирования, выпол­ненные отдельно от конструкции объекта и подключаемые к нему лишь в процессе диагностирования.

Простейшими примерами внешних аппаратурных средств могут быть приборы, присоединяемые к индикаторному крану, моментоскопы, приборы для измерения компрессии и т. п.

Аппаратурные средства диагностирования могут быть специа­лизированными, если они предназначены только для однотипных объектов, или универсальными, если предназначены для объектов различного конструктивного выполнения и функционального на­значения.

Программные СТД представляют собой программы, записанные на носителе и применяемые в составе специальных измерительных комплексов, выполненных, как правило, на базе переносных персональных компьютеров.

По степени автоматизации СТД могут быть ручными, автоматизированными и автоматиче­скими.

Применение ручных средств, например, тестеров аналого­вых или логических сигналов, требует участия человека-оператора как в подключении СТД к ОД, так и в принятии решений о его ТС. Использование ручных средств дает низкую производительность и недостаточную объективность диагностирования. Как правило, ручные средства выполняются специализированными.

Автоматизированные средства, требуют частичного участия оператора для их подключения к ОД и выбора режимов диагностирования. Основная же процедура диагностирования, включая выдачу инфор­мации о ТС ОД, осуществляется автома­тически.

Автоматические средства (микропроцессорные комплекты, мик­ро - и мини-ЭВМ) решают задачи диагностирования без вмешатель­ства человека.

Автоматизированные и автоматические средства могут быть как специализированными, так и универсальными Они обладают высоким быстродействием и достоверностью диагности­рования.

В зависимости от форм обработки и представления информа­ции СТД могут быть разделены на аналоговые, цифровые, цифро-аналоговые.

По степени воздействия на ОД СТД могут быть активными и пассивными. Активные воз­действуют на ОД, посылая в него сигнал, вызывающий реакцию, которая затем и анализируется. Возмущающие сигналы могут быть импульсными, ступенчатыми, гармоническими и др. Пассивные средства выполняют лишь измерения, обработку и оценку сигналов, характеризующих ТС ОД в процессе его эксплуатации, чаще всего на номинальном режиме.

Из всего многообразия средств диагностирования в промышленных ОД наибольшее применение в настоящее время находят аппаратурные средства для определения работоспособности и неисправности отдельных элементов или локальных систем управления ОД. Программные и программно-аппаратурные средства диагнос­тирования получают широкое внедрение по мере распространения микропроцессорных систем управления.

РАЗДЕЛ 3. СПЕЦИФИЧЕСКИЕ ОСОБЕННОСТИ
ДИАГНОСТИРОВАНИЯ ОБОРУДОВАНИЯ СЭУ


Дата добавления: 2019-07-15; просмотров: 244; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!