Аддитивный подход расчета физико-химических свойств углеводородных газов



Аддитивный подход расчета физико-химических свойств углеводородных газов

   Нефтяной газ при нормальных условиях содержит неполярные углеводороды – смесь углеводородов от С1 до С4: метан, этан, пропан, изо-бутан и н-бутан. С точки зрения физики к газам можно применять законы для идеальных систем.

То есть нефтяной газ – это идеальная система.

С точки зрения химии – идеальным называется газ силами взаимодействия между молекулами которого можно пренебречь.

 С точки зрения термодинамики идеальным называется газ, для которого справедливы равенства:

 

(∂Е / ∂V)T = 0,     z = P·V/Q·R·T = 1,    (2.8)

 

где Е – внутренняя энергия парообразования, Дж/моль;

z – коэффициент, характеризующий степень отклонения реального газа от закона идеального газа.

С точки зрения математики – это аддитивная система. Следовательно, для оценки свойств нефтяного газа (при нормальных или стандартных условиях) применимы аддитивные методы расчётов физико-химических и технологических параметров (Псмеси):

,           (2.9)

где Ni – мольная доля;

gi – весовая доля;

Vi – объёмная доля;

Пi – параметр i-го углеводорода или неуглеводородного компонента.

Аддитивный подход к расчёту физико-химических и технологических параметров означает, что каждый компонент газа в смеси ведет себя так, как если бы он в данной смеси был один.

Для идеальных газов давление смеси газа равно сумме парциальных давлений компонентов (закон Дальтона):

 

,                   (2.10)

       

где Р – давление смеси газов;

рi – парциальное давление i-го компонента в смеси,

или

,           (2.11)

 

.           (2.12)

 

То есть парциальное давление газа в смеси равно произведению его молярной доли в смеси на общее давление смеси газов.

Аддитивность парциальных объёмов (Vi) компонентов газовой смеси выражается законом Амага:

   ,           (2.13)

 

   где V – объём смеси газов;

Vi – объём i-го компонента в смеси.

или аналогично уравнениям 2.11–2.12 объём компонента газа можно оценить:

.           (2.14)

 

Как аддитивную величину рассчитывают и плотность смеси газов:

 

,           (2.15)

 

где сi – плотность i–го компонента;

Ni – мольная доля i–го компонента.

Молекулярная масса смеси рассчитывается по принципу аддитивности для смесей, состав которых выражен в мольных или объёмных долях по формуле 2.14 (левое выражение). Для смесей, состав которых выражен в массовых процентах по формуле 2.14 (правое выражение):

 

.           (2.16)

 

           Рассмотрим пример. При приготовлении рекомбинированной пробы смешивают следующие объёмы (V) газов: 100 м3 пропана (C3H8), 75 м3 изобутана (i-С4Н10) и 75 м3 нормального бутана (n-С4Н10).

Найти молекулярную массу смеси (Мсм).

Дано: Vi , м 3 Mi , кг/моль

C3H8          100    44

i-C4H10 75    58

n-C4H10   75    58

Решение. Находим общий объём газовой смеси: 100+75+75=250 (м3), и рассчитываем ее состав в объёмный процентах:

250 м3 – 100 %,

100 м3 – Х %;

           Х = 100100 / 250 = 40 (%) или VC3H8 = 0,4 (в долях);

   i-C4H10 – X %  X = 75100 / 250 = Vi-C4H10 = 30 % = 0,3 (в долях);

   n-C4H10 – 30 %     Vn-C4H10 = 30 % = 0,3 (в долях).

           Зная, что Vi = Ni, и зная молекулярные массы компонентов смеси: C3H8 – 44; C4H10 – 56, рассчитаем величину Mсм:

   Mсм =  MiNi = 440,4 + 580,3 + 580,3 = 17,6 + 17,42 = 52,4 (кг/моль).

Уравнение состояния

Уравнение состояния

           Для определения многих физических свойств природных газов используется уравнение состояния.

Уравнением состояния называется аналитическая зависимость между параметрами, описывающими изменение состояние вещества. В качестве таких параметров используется давление, температура, объём.

Состояние газа при нормальных и стандартных условиях описывается уравнением МенделееваКлапейрона:

 

,           (2.17)

 

   где Р – абсолютное давление, Па;

V – объём, м3;

Q – количество вещества, кмоль;

Т – абсолютная температура, К;

R – универсальная газовая постоянная, Па×м3/(кмоль×град).

На основе уравнения состояния газа можно рассчитать много параметров для системы нефтяного газа: плотность, мольный объём, количество молекул, число молекул, парциальные давления и др., если рассматривать уравнение состояния газа для 1 моля, т.е., Q = 1 моль. С учетом этого, уравнение состояния газа можно преобразовать следующим образом:

 

P·V = ∑N·R·T.            (2.18)

При ∑N = 1 моль, следует, что: P·V = R·T. Зная, что масса (m) одного моля идеального газа равна его молекулярной массе (М), умножив левую и правую части на молекулярную массу и массу газа, соответственно получим:

P·V·M = m·R·T.    (2.19)

 

Поделив обе части на V·R·T: и преобразовав 2.19, получим выражение для расчета плотности:

 

P·M / R·T = m / V, m / V = M·P / R·T r = M·P / R·T.    (2.20)

 

Рассмотрим пример. Дан один моль метана CH4.

Найти его плотность?

Решение. Зная, что молекулярная масса метана равна 16 г/моль и метан занимает объём при н.у. = 22,414 л, а при с.у. = 24,055 л, найдем:

        1. rCH4 (н.у.) = 16/22,414 = 0,717 (г/л);

2. rCH4 (с.у.) = 16/24,055 = 0,665 (г/л).

Плотность смеси газовых компонентов рассчитывают с учетом средней молекулярной массы смеси газа (Mсм), как отношение его молекулярной массы к его мольному объёму (Vм). Например, при нормальных условиях (н.у.) она будет рассчитываться по выражению:

 

rсм = Mсм / 22,414.            (2.21)

 

Из расчетов и из выражений 2.20, 2.21 следует, что плотность газа с возрастанием температуры будет уменьшаться, а с возрастанием давления (2.20) будет расти.

Рассмотрим другой пример. Определить плотность метана СН4 при избыточном давлении, например при давлении 3,5 атм и температуре 0°С. Решение. В этом случае общее давление в системе будет равно:

           Р = (3,5 + 1) = 4 (атм).

Зная, что молекулярная масса метана = 16 г/моль, универсальная газовая постоянная (R) = 0,08206 атмл/(Кмоль), а температура (T) = 273,15 К, найдем плотность метана:

 

rCH4 = Р·М / R·T = (3,5 + 1)·16 /0,08206 ·273,15 = 3,21 (г/л).

 

Относительная плотность газов рассчитывается по отношению к плотности воздуха, определенного при тех же условиях:

.           (2.22)

 

При нормальных условий (н.у.) плотность воздуха (свозд) » 1,293; при стандартных условий (с.у.) - свозд » 1,205.

Если плотность газа (со) задана при атмосферном давлении = 0,1013 МПа, то пересчёт её на другое давление (Р) при той же температуре для идеального газа производится по формуле:

 

.           (2.23)

               

           Рассмотрим пример. Для условий задачи, рассмотренной выше (см. пример раздела 2.2) можно рассчитать абсолютные (r) и относительные (сосм) плотности смеси, используя правое выражение (2.16) для расчета молекулярной массы:

 

           Мсм = 100 / (36,5 / 16 +17,2 / 30 +19,8 / 44 +14,7 / 58 +11,8 / 72)

            = 26,874 (кг/кмоль);

            rcv = 26,874 / 22,41 = 1,119 (кг/м3); 

            сосм (н.у.) = 1,119 / 1,293 = 0,927.       

Аналогично из (2.20) находится и выражение для мольного объёма:

 

 V = R ·T / P.            (2.24)

 

Отсюда, мольный объём при давлениях равному 1 атм или близких к атмосферному и для физических процессов, когда не происходит изменения числа молей в системе оценивается соотношением:

 

 V = R·T,                    (2.25)

 

где R – универсальна газовая постоянная, R = 0,08206 атм·л/(К·моль);

Т – температура, К;

Рассмотрим пример. Найти вид зависимости изменения мольного объёма газа от температуры V = f(T).

Решение. Воспользуемся выражением 2.25 и получим объём, занимаемый одним молем идеального газа при условиях задачи:

 

Vн.у. = 0,08206273,15 = 22,414 (л),

 

Vс.у. = 0,08206293,15 = 24,055 (л).

 

Любой газ при нормальных условиях (н.у.  Т = 0оС и Р = 760 мм рт. ст.) занимает объём равный 22,414 м3, а при стандартных (с.у. Т = 20 оС и Р = 760 мм рт. ст.) объём равный 24,055 м3.

С увеличением температуры мольный объём газа увеличивается. Мольный объём газов с возрастанием температуры будет расти, а с возрастанием давления (см. 2.24) уменьшаться.

У этого уравнения есть свои граничные условия. Оно справедливо для описания поведения газов при давлениях близких к атмосферному (от 1 до 10–12 атм) и при температурах до 20оС. При повышенном давлении газ сжимается и его состояние отличается от поведения идеальных газов.

Состояние реальных газов

Состояние реальных газов

   При повышенных давлениях для реальных газов характерно межмолекулярное взаимодействие, молекулы газов начинают притягиваться друг к другу, за счет физического взаимодействия.

Для учёта этого взаимодействия уравнение 2.17 на протяжении многих лет модифицировалось (голландским физиком Ван–дер–Ваальсом и др.). Однако на практике используется уравнениеМенделеева–Клапейрона для реальных газов, содержащее коэффициент сверхсжимаемости z, предложенный Д. Брауном и Д. Катцом и учитывающий отклонения поведения реального газа от идеального состояния:

,               (2.26)

   где Q – количество вещества, моль;

          z – коэффициент сверхсжимаемости газа (см. 2.8).

   Физический смысл коэффициента сверхсжимаемости заключается в расширении граничных условий уравнения Менделеева–Клапейрона для высоких давлений.

Коэффициент z зависит от давления и температуры (приведенных, критических давлений и температур), природы газа:

 

z = f (Тприв, Рприв),            (2.27)

 

   где Тприв – приведенная температура;

Рприв – приведенное давление.

Приведёнными параметрами индивидуальных компонентов называются безразмерные величины, показывающие, во сколько раз действительные параметры состояния газа (температура, давление, объём, плотность и др.) больше или меньше критических.

 Тприв.. = Тпл. / Тср. кр; Р прив. = Рпл. / Рср. кр; Vприв. = Vпл. / Vср. кр. (2.28)

А для смесей газов они характеризуются отношением действующих параметров (температура, давление и др.) к среднекритическим параметрам смеси:

      (2.29)

            (2.30)

 

Критическая температура – температура, при которой жидкий углеводород переходит в газообразное состояние (табл. 2.4.).

Критическое давление – давление, при котором газообразный углеводород переходит в жидкое состояние (табл. 2.4).

           Таблица 2.4


Дата добавления: 2019-02-12; просмотров: 839; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!