Прямое использование энергии солнечного света.



 

В некоторых жарких странах вошли в употребление примитивные солнечные печи для приготовления пищи. Они представляют собой ящики, оклеенные изнутри блестящей фольгой, которые выставляются на солнечный свет. Температура в них достигает 80 °С. Этого достаточно, чтобы через 4050 минут мясо или другие продукты были готовы для употребления в пищу.

 Солнечный свет используется для выращивания растений в теплицах. Стекло или прозрачная полимерная плёнка пропускают основную часть спектра солнечного излучения. Внутри оно трансформируется в тепловое инфракрасное излучение, для которого стекло или плёнка непрозрачны.

 На этом явлении основаны также устройства для нагревания воды. Простейшее из них просто ёмкость с водой, окрашенная в чёрный цвет и освещаемая солнцем.

Наиболее перспективным способом получения энергии является прямое преобразование солнечных лучей в электрический ток в солнечных батареях. Свет падает на слой полупроводника с электронной проводимостью, наложенный на другой слой, но уже с дырочной проводимостью. Кванты света выбивают из решётки полупроводника электроны. Места, покинутые ими, можно рассматривать как положительные заряды или дырки. При наложении на полупроводник разности потенциалов электроны движутся к аноду, а дырки к катоду.

Первые солнечные батареи обладали значительной стоимостью и применялись для энергетического обеспечения калькуляторов, часов. Постепенно область их применения значительно расширялась. К концу 2000 г. более миллиона семей во всём мире получали энергию от солнечных батарей. В Японии создан полупроводниковый материал в виде гибкой широкой ленты, которую можно размещать на крышах или на оконном стекле. С его использованием планируется к 2010 г. создать энергетические установки общей мощностью 4600 МВт. В США, Германии и Швейцарии фотогальванические элементы встраиваются непосредственно в фасады зданий. Создание тонких пропускающих свет полупроводниковых плёнок сделало возможным превращение обычных окон в миниатюрные электростанции.

Возможности использования солнечной энергии огромны. Даже в Великобритании с её большой облачностью установка солнечных батарей на крышах может дать в солнечный день 68000 МВт. Это половина суточного потребления энергии в стране в самый пасмурный день.

 

Водородная энергетика

Обеспечение населения Земли электроэнергией часто связывают с широким использованием водорода в качестве топлива, не выделяющего при окислении диоксида углерода и других вредных веществ.

 Водород самый распространённый химический элемент во Вселенной. На Земле он входит в состав живых организмов, природного газа, нефти, каменного угля, различных минералов. Самое распространённое вещество на Земле вода содержит около 11% водорода по массе. В свободном виде водород обнаружен в небольших количествах в вулканических газах и продуктах разложения некоторых органических веществ анаэробными бактериями. Водород самый лёгкий газ без вкуса, цвета и запаха. Он легче воздуха в 14,5 раза. С кислородом воздуха образует взрывоопасные смеси. Водород переходит в жидкое состояние при температуре 253 °С.

Сегодня самый дешёвый способ получения водорода конверсия природного газа. При этом образуется некоторое количество диоксида углерода, но оно на 40% меньше, чем в современных бензиновых двигателях, если проводить сравнение по всему жизненному циклу.

 Крупномасштабное производство водорода может быть осуществлено путём электролиза воды. Чистая вода плохо проводит электрический ток, поэтому водород получают электролизом водных растворов солей. Электролитическая ячейка имеет два электрода, подсоединённых к источнику постоянного тока.

На аноде идёт процесс окисления и в конечном итоге выделяется кислород, а на катоде процесс восстановления и выделяется водород.

 Серьёзной проблемой является хранение водорода. Большие количества, необходимые для использования в качестве ракетного топлива или последующего транспорта к месту потребления по специальным газопроводам, хранятся в сжиженном состоянии в адиабатических ёмкостях (в которых не происходит теплообмена с окружающим миром). Возможна доставка водорода в баллонах, где он находится под давлением.

При получении водорода затраты энергии превышают её отдачу. Электрический ток вырабатывается в топливном гальваническом элементе, в котором катодное и анодное пространства разделены керамической, металлической или полимерной мембраной. Водород непрерывно подаётся в анодное пространство, а кислород воздуха в катодное. Водород отдаёт свой электрон аноду, и далее он по металлическому проводу движется к катоду, а протон проходит к катоду через раствор или расплав. Анод и катод изготавливаются из пористого материала, например меди или никеля. До тех пор пока в анодном пространстве есть водород, а в катодном кислород, в замкнутой цепи циркулирует электрический ток. Топливный элемент генерирует постоянный ток напряжением 0,60,9 В. Элементы объединяются в батареи. Мощность батареи может достигать 3050 кВт.

Огромное достоинство топливных элементов, работающих на водороде и кислороде, состоит в том, что они абсолютно не загрязняют в окружающую среду. Они не имеют движущихся частей, просты в исполнении. КПД превращения химической энергии в электрическую и тепловую в них составляет 4560%.

Первые легковые автомобили с электродвигателями, работающими от топливных элементов, появились в Европе в 2001г.

 

Подумайте и ответьте Какие способы получения энергии вы считаете наиболее экологичными? Ответ обоснуйте.

 

Оцените работу группы · Наша группа с работой справилась отлично. · Наша группа с работой справилась хорошо. · Наша группа с работой не справилась. Почему? Что нужно предпринять, чтобы продолжить работу вместе?

 


Дата добавления: 2018-11-24; просмотров: 230; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!