ОТКУДА ВЗЯЛАСЬ ТЕМНАЯ МАТЕРИЯ ? 17 страница



Таким образом, последовательность уравнений (2.47) и (2.48) демонстрирует Рис. 18.            однородность и изотропность двумерной и трехмерной части пространства. И эта од­нородность прерывается на неравенстве (2.46) либо потому, что мир трехмерен, либо потому, что переход в более высокие измерения сопровождается изменением плотностной метричности пространства, а, следова­тельно, и изменением количественной величины коэф­фициента π. В этом случае уравнение последо­вательности (2.48) запишется следующим образом:

4/3πа4 + 4/3πb4 + 4/3πс4 + 4/3πd4 = 4/3πее4.   (2.49)

Если считать, что каждое слагаемое имеет собствен­ное числовое значение, соответствующее n-мерности, то логика последовательности может быть показана по­строением пространственного мерного ряда уравнений (табл. 5).

Предположим, что:

а - индекс какого-то числа натурального ряда или аб­страктное числовое обозначение длины, не связанной с плотностной мерностью;

а1 - длина одномерного луча;

аn, bn, сn,...,kn - длины лучей, у которых показатель степени соответствует мерности пространства.

Мерность пространства Уравнения

Безмерное (абстракция) а

Одномерное          а1 = b1

Двумерное            а2 + b2 = с2

Трехмерное           а3 + b3 + с3 = d3         (2.50)

Четырехмерное    а4 + b4 + с4 + d4 = е4

Пятимерное          а5 + b5 + с5 + d5 + е5 = f 5

… … … … … …    … … … … …

n – мерное         аn + bn + сn + dn + еn + ...= kn

Таблица 5

Этот ряд:

• логически последователен;

• свидетельствует о том, что пространство много­мерно, а количество членов левой части уравнений и чи­ словое значение степени при них соответствует номе­ ру мерности;

• показывает, что координатные оси равнозначны. Каждая ось многомерного пространства связана со всеми остальными;

• что существуют ортогональные и не ортогональ­ные координатные оси;

• двух- и трехмерная ортогональность обусловлива­ет некоторую стабильность метричности, которая следует из уравнений (2.47) и (2.48).

Отметим еще раз, что левая часть уравнений (2.50), —суммируемое количество степенных осей-лучей, как и показатель степени при них, соответствует мерности рассматриваемого пространства, и потому переход от кубичности длин к n-мерности суммируемых сфер-шаров происходит умножением трехмерных длин на ко­эффициент 4/3π2, а всех последующих на 4/3πn-2. И в модифицированных уравнениях сумма мерных величин будет приводиться к следующему виду:

4/3πаn + 4/3πbn + 4/3πсn + … + 4/3πkn = 4/3πn-2ln.    (2.51)

Из уравнения (2.51) следует, что его левая часть есть Определенная числовая последовательность объемного, для данной мерности, типа. И, в первом приближении, постулируется , что коэффициенты 4/3 и π остаются не­изменными в трех мерностях. А каждый прибавленный член последующей мерности находится из решения пре­дыдущего уравнения. Он-то и определяет степень плотностной деформации пространства в данной мерно­сти и в систему суммирования левой части входит в недеформированном виде как натуральный член числово­го ряда.

Однако в современной геометрии недеформированное π постулируется неизменным коэффициентом, кото­рый количественно равен числу 3,14159... остается, как полагают, неизменным не только в трехмерном евкли­ довом пространстве и при описании плоскостей этого пространства, но и при описании объемных простран­ ственных мерностей.

Думается, что здесь мы имеем дело с другими факто­рами. Обратим внимание на то, что одномерное про­ странство линия ¾ не имеет никакого пространст­ венного коэффициента. Это и понятно она ничего не образует и потому для нее π1 = 1. Но вот круг — пло­ ская фигура, качественно отличающаяся от линии, и образование круга на плоскости сопровождается появ­ лением иррационального коэффициента π2 = 3,14159.... единого для окружностей любых недеформированных плоскостей. Переход от плоскости к пространству сопровождается новым изменением коэффициента свя­ занного с окружностью. Безразмерный коэффициент π2 умножается на такой же безразмерный, но уже ирра­циональный коэффициент 4/3 = 1,333333... и в этой связке употребляется во всех расчетах. Но правильно ли такое понимание объемности? Не имеем ли мы дело сдругим безразмерностным, иррациональным объемным ко­эффици-ентом, равном 4/3π2 = π3 = 4,18879... . И не свидетельствует ли этот объемный коэффициент 4,18879... о том, что существует определенное измене­ ние качества при переходе от плоскостных фигур к объемным. То есть каждое изменение пространствен­ной мерности сопровождается изменением безраз­мерностного пространственного коэффициента π, к тому же образующиеся в точечных местах координатные оси не равнозначны (метрически), скорее они отра­ жают изменение плотности пространства ρ, а не возникновение новых координатных осей (мерностей)[51]. Отметим такую возможность и проведем расчеты па выявлению плотностной мерности пространства учитывая, что степень деформации определяется числом πn-2 и индивидуальна для каждого π при п > 2.

Проведем, используя в качестве примера, параметры чисел египетского треугольника, расчет для четырех- и пятимерного пространства:

4/3π(а4 + b4 + с4 + d4) = 4/3π4е44                      (2.52)

где; е4количественная величина радиуса четырехмер­ного объемного образования, равного сумме объемов левой части уравнения; π4 – коэффициент отношения окружности к диаметру в четырехмерном пространстве. Имеем:

а4 + b4 + с4 + d4 = π4е44 /π,                                     (2.53)

Поскольку очередной член числового ряда е = 7, то

е4 = πе43.                                                          (2.54)

Подставляя значение е4 из (2.54) в (2.52), имеем:

a 4 + b 4 + c 4 + d 4 = e 4 :                                            (2.55)

Перейдем к числовой записи:

34 + 44 + 54 + 64 = е4.

Решая уравнение (2.55), получаем, что е = 6,8933604..., и находим значение π4:

π4 = е4π/е41 = 3,3405509,

где π4 – коэффициент четырехмерности. Для нахожде­ния коэффициента пятимерности π5 продублируем уравнение (2.52) для пяти членов в левой части:

4/3π (а5 + b5 + с5 + d 5 + е5) = 4/3π5f5.

Приравнивая правую часть

f5 = πf55,

имеем следующее числовое уравнение:

 35 + 45 + 55 + 65 + 75 = f55.

Определяем величину пятимерного радиуса f 5 = 7,8055712 и по нему находим π5:

π5 = f5π/f51 = 3,55284.

Аналогичным образом можно получить πn любой плотностной мерности.

Уравнение плотностной пространственной размерно­сти (2.50), начинающееся в числовом отображений с цифры 3, может начинаться и с базисной 1 (что одно и то же). В этом случае оно имеет следующую ρn – мерную числовую последовательность:

1 = 1,

12 + 1,3332... = 1,6662...,                                     (2.56)

13 + 1,3333 + 1,6663 = 23...и т.д.

Где 1,333... и 2коэффициенты трехмерности, такие же, как π для двухмерности. И, следовательно, встречающиеся во многих уравнениях цифра 2, рассматри­ваемая как удвоение, может в отдельных конкретных случаях играть роль неявного индекса трехмерности, так же как и 4/3 = 1,333... . И, возможно, коэффициенты многомерности образуются именно набором чисел, вхо­дящих в уравнения (2.50), (2.51).

Таким образом, обращение к основам геометрии Евк­лида позволило нам перейти от трехмерной плотности пространства к плотности многомерной. Но в данном случае многомерность не является дополнительными размерностями к трем существующим. Числа, члены матричных уравнений, отображая различную плотностную мерность, остаются взаимосвязанными объе­ мами одного пространства, различные точки которого имеют неодинаковую пространственную плотность. Последние и сравниваются с плотностью точек, входя­щих в квантованные уравнения посредством простран­ственных коэффициентов πп. Они, похоже, отличают плотностную деформированность различных областей пространства, приводя ее к некоей одной деформиро ванности при использования пространственных коэф­ фициентов, своих для каждой его точки.

Как следствие того, что изменение пространственной мерности сопровождается не увеличением количества координатных осей, а изменением плотности той облас­ти, которая рассматривается и может служить как раз­личная количественная величина π, отображающая плотностную деформацию соответствующего п –мерно­го пространства. Поскольку на сегодняшний день и фи­зики и математики исходят из неизменности π, то поко­лебать эту убежденность может только конкретные доказательства истинности новых значений π, напри­мер, посредством образования с новыми π количествен­ной величины некоторых известных в физике безраз­мерностных коэффициентов. Именно такую операцию предлагал П. Дирак [52] для вычисления самой фундаментальной константы кванто­вой механики — постоянной тонкой структуры α. При­веду дословно его высказывание:

«Одна из них — величина, обратная знаменитой посто­янной тонкой структуры hс/2πе2. Она является фунда­ментальной константой в атомной физике и приблизи­тельно равна 137. Другая безразмерная постоянная определяется отношением массы протона к массе элек­трона тре составляет около 1840, Удовлетворительного объяснения этих чисел пока нет, но физики наде­яться, что в конце концов оно будет найдено. Тогда при­ веденные постоянные вычислялись бы с помощью ос­ новных математических уравнений; вполне вероятно, что подобные постоянные составлены из простых ве­ личин типа 4p » (курсив мой. — А.Ч.).

Это предположение было высказано П. Дираком более трети  века назад. Но и до сих пор многочисленные по­пытки вычисления этих констант с использованием трехмерного π не привели к желаемому результату. Применение плотностных n-мерных π, похоже, позво­ляет приблизиться к решению проблемы. Прежде чем приступать к качественному расчету, попробуем представить, какими величинами «оперирует» природа при построении плоскостей и объемов. Расстояния, плоскости и объемы в природе отсутствуют. Все эти понятия придуманы человеком для облегчения восприятия и описания окружающего мира. В природе имеются только волновые взаимодействия и ве­щественная среда тел, обусловливающая данные взаимодействия. И эти целостные взаимодействия мы, для получения необходимых результатов, вынуждены расчленять и интегрировать самыми разными способами, не имея даже представления о том, корректно ли производятся эти операции. Не исключено, что длинуокружности, как и объем шара «правильнее» получать не как произведение 2π на квадрат или куб радиуса; а как некое где ή = √π. То есть пространственный коэф­фициент π в природе не возрастает (и, соответствен­ но, не уменьшается), а изменяется в степенной пропорции. В этом случае нахождение постоянной тон­кой структуры α формализовать достаточно просто ис­ходя из того, что трехмерность равна плоскому π, ум­ноженному на пространственный коэффициент трех­мерности Λ = 1,33333...: π3 = Λπ

Тогда один из вариантов получения α:

α = 42(√πΛ)= 137,168

Можно полагать, что α = 137,168 – есть некая грань-сфера между трехмерной и четырехмерной плотностью пространства. Причем количественная величина α явля­ется «плавающей» характеристикой, зависящей и от свойств атома, и от свойств элементарной частицы, пре­одолевающей эту сферу (например, для электрона водо­рода граница близка к 137, а урана к 137,16). Для про­странств различных атомов она, вероятно, варьируется от 137,000 до 137,168 и непреодолима для элементарных частиц без изменения их качества. Она свидетельствует, например, о том, что электрон является трехмерной час­тицей и, «преодолевая» грань-сферу трехмерность-четырехмерность, «разваливается» на два четырехмер­ных кванта, а фотон, в свою очередь, частица четырех­мерная и потому практически не реагирует на воздейст­вие электромагнитных полей трехмерного мира. Преодолевая сферический барьер четырехмерность-трехмерность, он тоже «разваливается» на трехмерные электрон и позитрон.

Основываясь на разделении пространства по плотно­стям, можно показать, что размер, известный как клас­сический радиус электрона l; l = е2/mс2, есть, по-видимому, расстояние от центра ядра атома до границы перехода из третьего измерения в четвертое, т.е. в об­ласть, в которой электрон достигает световой скорости и стоит на «пороге» перехода в четвертое измерение (фотон, находящийся за этой границей, движется все­ гда со световой скоростью). Определим инвариант ско­рости электрона на боровской орбите:

а v 2 = 2,53·108,                                                 (2.57)

и посмотрим, на каком расстоянии l от центра ядра ско­рость электрона будет равна скорости света. Подставим в инвариант (2.57) вместо v скорость с и получим l :

l = 2,53·108/с2 = 2,814·10-13 см,

именно это расстояние и принимается за классический радиус электрона.

По современным представлениям размеры ядер ато­мов находятся в пределах 10-13 см. Но из данного расчё­та следует, что l – не классический радиус электрона и не размер ядра, а граничная сфера между четвертой и пятой плотностной мерностью пространства атома и, следовательно, границу поверхности ядра надо отодви­нуть как минимум на два-пять порядков. (В.К. Словен­ских теоретически показал [53], что радиус ядер эле­ментов таблицы Менделеева находится в пределах 8,510-14 ÷ 2,310-14, однако более вероятно, что радиусы ядер находятся в пределах 2·10-15 см.)

Перейдем к рассмотрению другого коэффициента – 1840, не имеющего индексации. Обозначим его в дан­ной работе через α', и, рассуждая аналогично предыду­щему случаю, приходим к выводу, что по своей величи­не он должен отражать плотность, находящуюся ближе к поверхности ядра, чем α (не исключено, что к поверх­ности ядра эфирного атома — псевдоатома, или плот­ность самого ядра). Скорее всего, эта сферическая по­верхность является гранью между четвертым и пятым плотностным измерением. Если предположить, что ко­эффициент трехмерности 1,3333... содержат все объемные πn, то плотностные расчеты можно производить без коэффи­циента трехмерности. Находим α' как границу четверто­го измерения при π4 = 3,34055.... Формула очень проста и потому несколько сомнительна, хотя результат доста­точно правдоподобен:

α' = 4α'π4 = 1831,11.

Сразу получаем величину, очень близкую к искомой. Но есть, по-видимому, более корректный результат по π5:

α' = 4αΛ2√π5 = 1838.

Можно ли довериться тому обстоятельству, что в обеих формулах присутствует постоянная тонкой структуры α и коэффициент 4, как это и предполагал П. Дирак. К то­му же если α есть переход из третьего плотностного из­мерения в четвертое, то α' – из четвертого в пятое, и та­ким образом в полученных формулах оказываются задействованы коэффициенты всех переходных про­странств. Граница α' между плотностью четвертой и пя­той мерностей, вероятно, тоже «плавает» в атомах различных элементов в пределах 1830 - 1840 и непреодо­лима для световых фотонов. Именно невозможность ее преодоления фотонами и обусловливает существование преломления и отражения света. И надо полагать, что коэффициент a ' есть не отношение масс протона к массе электрона, а еще неизвестное отношение плот­ ности пятимерного пространства к плотности четы­ рехмерного. Нельзя исключить и того, что высокая плотность пятимерного пространства оказывается ос­новным фактором существования сильного взаимодей­ствия, поскольку это взаимодействие проявляется имен­но на таком расстоянии от центра ядра. Тогда слабое взаимодействие может оказаться связанным с перехо­дом из трехмерного пространства в некое промежуточ­ное с двумерным (а это означает, что и пространствен­ная мерность может оказаться нецелочисленной как вглубь, так и наружу).

Таким образом вероятность представления об плотностной ρл-мерности пространства как об изменении пространственной плотности можно считать достаточно убе­дительным и отметить следующую градацию плотностной мерности: коэффициент трехмерности ра­вен 4/3π2 = π3 = 4,18879..., четырехмерности π4 = 4,45407..., пятимерности π5 = 4,73713..., шестимерности π6 = 4,9812035..., семимерности π7 = 5,1839564..., восьмимерности π8 = 5,3532381... и т.д. Естественно также, что они должны быть каким-то образом взаимосвязаны. И эта взаимосвязь прослеживается методом трехчастных делений — методом вурфов. Познакомимся в об­щих чертах с этим методом.


Дата добавления: 2018-11-24; просмотров: 33; ЗАКАЗАТЬ РАБОТУ