ФАРМАКОДИНАМИКА ГЛЮКОКОРТИКОСТЕРОИДОВ



Молекулярный механизм действия ГК реализуется путем регуляции экспрессии ряда генов на транскрипционном и посттранскрипционном уровнях, а также в негеномных эффектах, которые проявляются при использовании высоких доз препаратов. ГК связываются с цито-плазматическими ГК-рецепторами, расположенными внутри клеток-мишеней, регулирующих транскрипцию широкого спектра генов за счет двух основных механизмов: прямого и опосредованного.

Во-первых, внутри клетки ГК-рецепторы образуют димер, который связывается с участками ДНК, получившими название глюкокортикоидотвечающих элементов (glucocorticoid response elements — GRE), расположенными в промоторном участке стероидотвечающего гена. Во-вторых, ГК-рецепторы взаимодействуют с различными факторами транскрипции или ядерными факторами (nuclear factor — NF). Ядерные факторы, такие как активаторный белок фактора транскрипции (АР-1) и NF-kB, являются естественными регуляторами нескольких генов, принимающих участие в иммунном ответе и воспалении, включая гены цитокинов, их рецепторов, молекул адгезии, протеиназ и др. Причем, фармакологическая активность ГК зависит не столько от их концентрации и длительности сохранения в крови, сколько от состояния рецепторов в тканях и последующего влияния на синтез эффекторных белков. Одним из важнейших является липокортин, который ингибирует ферментфосфолипазу-А2 и, тем самым, подавляет синтез простагландинов и лейкотриенов, играющих ключевую роль в развитии воспалительной реакции.

Важный молекулярный механизм действия ГК связан с влиянием на транскрипционную активацию цитоплазматического ингибитора NF-kB — IkBa. Полагают также, что в зависимости от дозы эффекты ГК могут реализовываться на разных уровнях. Например, в низких концентрациях (> 1012 моль/Л) ГК реализуют свое действие только за счет так называемых геномных эффектов, для развития которых требуется 30 и более минут, в средних концентрациях (>109), как геномных, так и рецептор-опосредованных (1—2 мин), и, наконец, в высоких (>104). Наряду с перечисленными выше эффектами определенную роль начинает играть способность ГК влиять на физико-химические свойства биомембран клеток-мишеней (несколько секунд).

Эти данные в определенной степени позволяют объяснить развитие противовоспалительной и иммуномодулирующей активности ГК при назначении их больным в низких (<10 мг/сут), средних/высоких (1 мг/кг/сут) дозах или пульс-терапии (1 г/сут).

Одной из особенностей ГК является развитие резистентности. Полная устойчивость к действию стероидов наблюдается редко (1:1000 больных). Чаще встречается относительная резистентность, при которой у больных отмечается снижение чувствительности к данным лекарственным средствам, что требует их назначения в высоких дозах. Механизм развития устойчивости к действию стероидов изучен пока недостаточно. Первичная резистентность встречается относительно редко. Она характеризуется снижением числа ГК рецепторов в различных клетках. У больных, как правило, отсутствуют побочные эффекты действия ГК. Причины ее неясны, не исключена роль генетических факторов. Значительно чаще встречается вторичная (приобретенная) резистентность к ГК. Она имеет локальный характер, т.е. наблюдается в зоне воспаления. Предполагается, что резистентность этого типа возникает в результате избыточной продукции провоспалительных цитокинов. Вероятными молекулярными механизмами ее развития являются нарушение транслокации комплексов «гормон-рецептор» из цитоплазмы в ядро и взаимодействие с ДНК. Другими вероятными механизмами приобретенной резистентности являются связывание комплекса «гормон-рецептор» с факторами транскрипции, фосфорилирование стероидных рецепторов, снижение активности деацетилазы гистонов.

Основные эффекты глюкокортикостероидов

Противовоспалительное и иммуномодулирующее действие

Глюкокортикостероиды являются наиболее эффективными противовоспалительными препаратами и потенциально обладают способностью подавлять большинство механизмов, лежащих в основе воспаления:

• Угнетение экспрессии антигенов класса II главного комплекса гистосовместимости, клеточных молекул адгезии (ICAM-1, ELAM-1, Е-селектин), "провоспалительных" цитокинов (ФНО-а, ИЛ-6, ИЛ-1), ЦОГ-2, рецепторов эндотелина.

• Стабилизация сосудистой проницаемости.

• Усиление экспрессии липокортина-1

• Ингибиция функции нейтрофилов (образование супероксидных радикалов О2 — хемотаксис, адгезия, апоптоз, фагоцитоз, метаболизм арахидоновой кислоты).

• Снижение миграции в зону воспаления.

• Индукция липокортина, липомодулина, макрокортина.

• Супрессия NF-кВ и ЦОГ-2.

• Подавление синтеза цитокинов (ИЛ-1, ФНО, ИЛ-6 и др.).

• Подавление экспрессии Fc-рецепторов на мембране моноцитов.

• Увеличение экспрессии Fc-рецепторов на мембране фагоцитов.

• Снижение синтеза ИЛ-2 и ИФН-g.

• Регуляция тиомопоэза, посредством апоптоза.

• Подавление функции Т-лимфоцитов и естественных килерных клеток.

• Подавление синтеза иммуноглобулинов (в высоких дозах).

Влияние на водно-электролитный обмен

     Замедление выделения из организма натрия и воды за счет увеличения реабсорбции в дистальном отделе почечных канальцев. Усиление выведения калия. Эти минералкортикоидные эффекты в большей степени присущи природным ГК (кортизону и гидрокортизону), в меньшей – полусиснтетическим (преднизолону, метилпреднизолону). У фторированных препаратов – триамцинолона, дексаметазона и бетаметазона – минералкортикоидная активность отсустствует.

Влияние на углеводный обмен

     Стимуляция глюконеогенеза в печени, уменьшение проницаемости мембран для глюкозы, гипергликемия, глюкозурия вплоть до развития стероидного диабета.

Влияние на белковый обмен

     Угнетение синтеза белка, усиление процессов катаболизма, особенно в коже, в мышечной и костной тканях. Это проявляется похуданием, мышечной слабостью, атрофией кожи и мышц, стриями, кровоизлияниями, замедлением заживления ран.

Влияние на жировой обмен

     Перераспределение подкожной жировой клетчатки по кушингоидному типу вследствие того, что в тканях конечностей преобладает липолиз, а в тканях груди, шеи, лица, плечевого пояса – липогенез.

Влияние на обмен кальция

     Глюкокортикостероиды угнетают всасывание кальция в кишечнике, способствуют выходу кальция из костной ткани и усиливают его почечную экскрецию. В результате могут развиваться гипокальциемия, гиперкальциурия и остеопороз.

Влияние на сердечно-сосудистую систему

     Глюкокортикостероиды повышают чувствительность адренорецепторов к катехоламинам, усиливают прессорное действие ангиотензина –II, уменьшают проницаемость капилляров, поддерживают нормальный тонус артериол, сократимость миокарда.

     Недостаточность коры надпочечников характеризуется низким сердечным выбросом, расширением артериол, слабой реакцией на адреналин. В сочетании с гиповолемией, вызванной дефицитом минералкортикоидов, эти изменения могут вести к сосудистому коллапсу.

Влияние на кроветворение

     Глюкокортикостероиды вызывают лимфоцитопению, моноцитопению и эозинофилопению. В то же время, они стимулируют образование эритроцитов, лейкоцитов и тромбоцитов. Максимум изменений в крови отмечается через 4-6 часов, восстановление исходного состояния – через 24 часа. После завершения длительного курса глюкокортикоидной терапии изменения картины крови сохраняются на протяжении 1-4 недель.

Влияние на эндокринную систему

     Отмечается угнетение гипоталамо-гипофизарно-надпочечниковой системы, обусловленное механизмом отрицательной обратной связи. Оно более выражено при длительном применении ГК и/или использовании препаратов, обладающих продолжительным действием.

     Кроме того, ГК вызывают снижение выработки половых гормонов, которое является результатом прямого ингибирования их синтеза и уменьшения продукции лютоинезирующего гормона гипофиза.

 

ГЛАВА 4


Дата добавления: 2018-10-27; просмотров: 115; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!