Геометрическая эффективная граница



Особенность рисунка 7‑1 состоит в том, что он отображает арифметическое сред­нее HPR. Если прибыли реинвестируются, то для координаты эффективной гра­ницы по оси Y правильнее рассматривать геометрическое среднее HPR. Такой

подход многое меняет. Формула для преобразования точки на эффективной гра­нице из арифметического HPR в геометрическое такова:

 

 

где GHPR = геометрическое среднее HPR;

AHPR = арифметическое среднее HPR;

V= координата дисперсии (она равна координате стандартного отклонения в квадрате).

 

 

Рисунок 7‑2 Эффективная граница с реинвестированием и без реинвестирования

На рисунке 7‑2 показана эффективная граница, соответствующая арифметичес­ким средним HPR, и граница, соответствующая геометрическим средним HPR. Посмотрите, что происходит с эффективной границей при реинвестировании.

Построив линию GHPR, можно определить, какой портфель является геометрически оптимальным (наивысшая точка на линии GHPR). Вы може­те найти этот портфель, преобразовав AHPR и V каждого портфеля на эф­фективной границе AHPR в GHPR с помощью уравнения (7.05) и выбрав максимальное значение GHPR. Однако, зная AHPR и V портфелей, лежа­щих на эффективной границе AHPR, можно еще проще определить геомет­рический оптимальный портфель, он должен удовлетворять следующему уравнению:

 

(7.06a) AHPR‑1‑V=0,

где АН PR = арифметическое среднее HPR, т.е. координата Е дан­ного портфеля на эффективной границе;

V= дисперсия HPR, т.е. координата V данного портфеля на эффективной границе. Она равна стандартному отклонению в квадрате.

Уравнение (7.06a) также можно представить следующим образом:

(7.06б) AHPR ‑ 1 = V

(7.06в) AHPR‑V=1

(7.06г) AHPR=V+1

Необходимо сделать небольшое замечание по геометрическому оптимально­му портфелю. Дисперсия в портфеле в общем случае имеет положительную корреляцию с наихудшим проигрышем. Более высокая дисперсия обычно со­ответствует портфелю с более высоким возможным проигрышем. Так как гео­метрический оптимальный портфель является портфелем, для которого Е и V равны (при E=AHPR‑ 1), мы можем допустить, что геометрический опти­мальный портфель будет иметь высокие проигрыши. Фактически, чем боль­ше GHPR геометрического оптимального портфеля (т.е. чем больше зараба­тывает портфель), тем больше может быть его текущий проигрыш (откат по балансу счета), так как GHPR положительно коррелирован с AHPR. Здесь мы видим некий парадокс. С одной стороны нам следует использовать геометри­ческий оптимальный портфель, с другой – чем выше среднее геометрическое портфеля, тем большими будут откаты по балансу счета в процентном выра­жении. Мы знаем также, что при диверсификации следует выбирать порт­фель с наивысшим средним геометрическим, а не с минимальным проигры­шем, но эти величины стремятся в противоположных направлениях! Геомет­рический оптимальный портфель – это портфель, который расположен в точке, где линия, прочерченная из (0, 0) с наклоном 1, пересекает эффектив­ную границу AHPR.

Рисунок 7‑2 показывает эффективные границы на основе одной сделки. Мы можем преобразовать геометрическое среднее HPR в TWR с помощью уравнения:

(7.07)  GTWR = GHPR^ N,

где GTWR = значение вертикальной оси, соответствующее данному GHPR после N сделок;

N ‑ число сделок, которые мы хотим использовать.

 

Рисунок 7‑3   Эффективная граница с реинвестированием и без реинвестирования

 

 

Рисунок 7‑4 Эффективная граница с реинвестированием и без реинвестирования

 

Пусть нашей целью будет AHPR при значении V, которое соответствует геометричес­кому оптимальному портфелю. В знаменателе (2.09а) мы используем среднее геомет­рическое геометрического оптимального портфеля. Теперь мы можем определить, сколько сделок необходимо для того, чтобы привести наш геометрический опти­мальный портфель к одной сделке арифметического портфеля:

 

N=ln(l,031)/ln(l,01542) =0,035294/0,0153023 = 1,995075

Таким образом, можно ожидать, что через 1,995075, или приблизительно через 2 сделки, оптимальное GHPR достигнет соответствующего (при том же V) AHPR для одной сделки. Здесь возникает проблема, которая заключается в том, что ATWR должно отражать тот факт, что прошли две сделки. Другими словами, когда GTWR приближается к ATWR, ATWR двигается вверх, хотя и с постоянной скоростью (в отличие от GTWR, которое ускоряется). Можно решить эту проблему с по­мощью уравнений (7.07) и (7.08) для расчета геометрического и арифметичес­кого TWR:

 

 

Так как мы знаем, что, когда N = 1, G всегда меньше А, можно перефразировать вопрос: «При скольких N G будет равно А?» Математически это будет выглядеть таким образом:

 

 

что можно представить следующим образом:

 

 

или

 

 

или

 

 

N в уравнениях с (7.10а) по (7. 10г) представляет собой количество сделок, кото­рое необходимо для того, чтобы геометрическое HPR стало равно арифметичес­кому. Все три уравнения эквивалентны. Решение можно получить методом ите­раций. Зная для нашего геометрического оптимального портфеля GHPR= 1,01542 и соответствующее AHPR= 1,031 и решая любое уравнение с (7.10а) по (7. 10г), мы находим, что N = 83,49894. Таким образом, после того, как пройдет 83,49894 сделки, геометрическое TWR догонит арифметическое. Полу­ченный результат справедлив для тех TWR, которые соответствуют координате дисперсии геометрического оптимального портфеля.Так же, как и AHPR, GHPR имеет свою линию CML. Рисунок 7‑5 показывает как AHPR, так и GHPR с линиями CML, рассчитанными на основе безрисковой ставки.

 

 

Рисунок 7‑5 AHPR, GHPR и их линии CML

Зная CML для AHPR, можно рассчитать CML для GHPR следующим образом:

 

 

CMLG = координата Е (по вертикали) линии CML для GHPR при данной координате V, соответствующей Р;

CMLA= координата Е (по вертикали) линии CML для AHPR при данной координате V, соответствующей Р;

Р = процент в касательном портфеле, рассчитанный из (7.02);

VT = координата дисперсии касательного портфеля.

Следует иметь в виду, что для данной безрисковой ставки касательный портфель и геометрический оптимальный портфель в общем случае не одинаковы. Портфели будут идентичными при выполнении следующего равенства:

(7.12)   RFR=GHPROPT‑1,

где    RFR = безрисковая ставка;

GHPROPT = среднее геометрическое HPR геометрического оптималь­ного портфеля, т.е. координата Е портфеля на эффектив­ной границе.

Только когда разность GHPR геометрического оптимального портфеля и еди­ницы равна безрисковой ставке, геометрический оптимальный портфель и ка­сательный портфель будут одинаковыми. Если RFR > GHPROPT ‑ 1, тогда гео­метрический оптимальный портфель будет слева (т.е. иметь меньшую диспер­сию, чем касательный портфель). Если RFR < GHPROPT ‑ 1, тогда касательный портфель будет слева (т.е. иметь меньшую дисперсию, чем геометрический оп­тимальный портфель). Во всех случаях касательный портфель, конечно же, ни­когда не будет иметь более высокое GHPR, чем геометрический оптимальный портфель.

Отметьте также, что точки касания CML к GHPR и CML к AHPR имеют одну координату SD. Мы можем использовать уравнение (7.01а) для поиска касатель­ного портфеля GHPR, заменив в (7.01а) AHPR на GHPR. В результате получится следующее уравнение:

 

 

где МАХ{}= максимальное значение;

GHPR = геометрическое среднее HPR, т.е. координата Е данного портфеля на эффективной границе;

SD = стандартное отклонение HPR, т.е. координата SD данного портфеля на эффективной границе;

RFR = безрисковая ставка.

Неограниченные портфели

В этом разделе мы увидим, что можно поднять прибыли выше линии GCML, если снять ограничение на сумму весов. Давайте вернемся к геометрическим оп­тимальным портфелям. Если мы попробуем составить геометрический опти­мальный портфель из наших четырех рыночных систем – Toxico, Incubeast, LA Garb и сберегательного счета, то с помощью уравнений с (7.0ба) по (7.06г) най­дем, что он является таковым при Е, равном 0,1688965, и V, равном 0,1688965. Среднее геометрическое такого портфеля будет равно 1,094268, а состав портфе­ля будет иметь вид:

Toxico                   18,89891%

Incubeast                19,50386%

LA Garb                58,58387%

Сберегательный счет     0,03014%

При решении уравнений с (7.06а) по (7.06г) необходимо использовать метод ите­раций, т.е. выбирать тестируемое значение для Е и решать матрицу для этого Е. Если полученное значение дисперсии больше значения Е, это означает, что тес­тируемое значение Е слишком высокое и в следующей попытке следует его пони­зить. Вы можете определить дисперсию портфеля, используя одно из уравнений с (6.06а) по (6.06г). Повторяйте процесс, пока не будет выполняться любое из ра­венств с (7.06а) по (7.06г). Таким образом вы получите геометрический оптималь­ный портфель (отметьте, что все рассмотренные портфели на эффективной гра­нице AHPR или на эффективной границе GHPR определяются с учетом того, что сумма весов равна 100%, или 1,00). Вспомните уравнение (6.10), используемое в первоначальной расширенной матрице для поиска оптимальных весов портфеля, уравнение отражает тот факт, что сумма весов равна 1:

 

 

где       N = количество ценных бумаг, составляющих портфель;

X. = процентный вес ценной бумаги L Уравнение также можно представить следующим образом:

 

 

Мы можем найти неограниченный оптимальный портфель, если левую часть этого уравнения приравнять к числу больше 1. Для этого добавим еще одну рыночную систему, называемую беспроцентным вкладом (non‑interest‑bearing cash (NIC)), в первоначальную расширенную матрицу Данная рыночная система будет иметь дневное среднее арифметическое HPR= 1,0, а стандартное отклонение, диспер­сию и ковариацию дневных HPR равными 0. Коэффициенты корреляции NIC с любой другой рыночной системой всегда равны 0.

Теперь установим ограничение суммы весов на некоторое произвольное чис­ло, большее единицы. Хорошим первоначальным значением будет количество используемых рыночных систем (без NIC), умноженное на три. Так как мы имеем 4 рыночные системы (не учитывая NIC), то ограничим сумму весов 4*3=12.

Отметьте, что мы просто устанавливаем ограничение на произвольное значе­ние, большее единицы. Разность между этим выбранным значением и суммой полученных весов будет весом системы NIC.

На самом деле, мы не собираемся инвестировать в NIC. Это просто дополни­тельная переменная, с помощью которой мы создадим матрицу для получения

неограниченных весов рыночных систем. Теперь возьмем параметры наших че­тырех рыночных систем из главы 6 и добавим NIC:

 

 

Ковариации рыночных систем, включая NIC, будут следующими:

 

 

Добавив NIC, мы получим 5 рыночных систем, и обобщенная форма первона­чальной расширенной матрицы будет выглядеть следующим образом:

 

 

неограниченных весов рыночных систем. Теперь возьмем параметры наших че­тырех рыночных систем из главы 6 и добавим NIC:

 

 Инвестиция Ожидаемая прибыль в виде HPR Ожидаемое стандартное отклонение прибыли
Toxico 1,095 0,316227766
Incubeast Corp. 1,13 0,5
LA Garb 1,21 0,632455532
Сберегательный счет 1,085 0
Беспроцентный вклад 1,00 0

 

Ковариации рыночных систем, включая NIC, будут следующими:

 

  Т I L S N
           
Т 0,1 ‑0,0237 0,01 0 0
I ‑0,0237 0,25 0,079 0 0
L 0,01 0,079 0,4 0 0
S 0 0 0 0 0
N 0 0 0 0 0

 

Добавив NIC, мы получим 5 рыночных систем, и обобщенная форма первона­чальной расширенной матрицы будет выглядеть следующим образом:

 

 

После включения NIC первоначальная расширенная матрица приобретет вид:

 

 

Отметьте, что значение на пересечении столбца ответов и второй строки, т.е. огра­ничение суммы весов, равно количеству рыночных систем (не включая NIC), ум­ноженному на 3. С помощью элементарных преобразований, описанных в главе 6, получим еди­ничную матрицу. Теперь вы можете определить эффективную границу AHPR и эф­фективную границу GHPR для портфеля с неограниченными весами. Эффективная граница AHPR для портфеля с неограниченными весами соответствует использова­нию рычага (заемного капитала) без реинвестирования.

Эффективная граница GHPR соответствует использованию рычага и реин­вестированию прибылей. Наша цель – найти оптимальный неограниченный геометрический портфель, который в результате даст наибольший геометричес­кий рост. Можно использовать уравнения с (7.Оба) по (7.06г) для нахождения на эффективной границе геометрического оптимального портфеля. В нашем слу­чае, независимо от того, какое значение мы пытаемся найти для Е (значение на пересечение столбца ответов и первой строки), мы получаем один и тот же пор­тфель, состоящий только из сберегательного счета, поднятого рычагом для дос­тижения желаемого значения Е. В этом случае мы получаем самое низкое V (т. е. 0) для любого Е.

Удалим из матрицы сберегательный счет и повторим процедуру. На этот раз мы рассмотрим только четыре рыночные системы (Toxico, Incubeast, LA Garb и NIC) и ограничим сумму весов числом 9. Мы должны поступить таким образом, потому что, как только в матрице появляется компонент с нулевой дисперсией и AHPR большим 1, мы получаем оптимальный портфель, состоящий из одного компонента, а для соответствия требуемому Е будет меняться только рычаг это­го компонента.

Решив матрицу, мы увидим, что уравнения с (7.06а) по (7.06г) удовлетворяют­ся при Е, равном 0,2457. Так как это геометрический оптимальный портфель, V также равно 0,2457. Получившееся среднее геометрическое равно 1,142833. Порт­фель будет выглядеть следующим образом:

Toxico         102,5982%

Incubeast       49,00558%

LA Garb        40,24979%

NIC          708,14643%

Возникает резонный вопрос: «Каким образом сумма весов компонентов может быть больше 100%?» Мы ответим на этот вопрос, но несколько позже.

Если NIC не является одним из компонентов геометрического оптималь­ного портфеля, то следует поднять ограничение суммы весов S до уровня, ког­да NIC станет одним из компонентов геометрического оптимального портфе­ля. Вспомните, что если в портфеле есть только два компонента, причем ко­эффициент корреляции между ними равен ‑1 и оба компонента имеют поло­жительное математическое ожидание, тогда от вас потребуется финансирова­ние бесконечного числа контрактов, поскольку такой портфель никогда не будет проигрывать. Следует также отметить, что чем ниже коэффициенты корреляции между компонентами в портфеле, тем выше процент, требуемый для инвестирования в эти компоненты. Разность между инвестированными процентными долями и ограничением суммы весов S должна быть заполнена NIC. Если NIC отсутствует среди компонентов геометрического оптимально­го портфеля, значит портфель работает при ограниченном S и поэтому не мо­жет считаться неограниченным геометрическим оптимальным портфелем. Так как вы не будете в действительности инвестировать в NIC, то не имеет значения, каков его вес, пока он является частью геометрического оптималь­ного портфеля.

 


Дата добавления: 2018-10-26; просмотров: 207; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!