Законы арксинуса и случайное блуждание



Давайте поговорим о проигрышах, но сначала скажем несколько слов о пер­вом и втором законах арксинуса. Эти принципы относятся к случайному блужданию. Поток торговых P&L в некоторых случаях может быть неслучай­ным, хотя обычно большинство потоков торговых прибылей и убытков почти случайны, что можно подтвердить серийным тестом и коэффициентом ли­нейной корреляции. Законы арксинуса предполагают, что вы заранее знаете сумму, которую можно выиграть или проиграть, и допускают, что сумма, которую можно выиграть, равна сумме, которую можно проиграть, и эта сумма постоянна. В нашей дискуссии мы допустим, что сумма, которую вы можете выиграть или проиграть, – это 1 доллар за каждую игру. Законы арксинуса также допускают, что у вас есть 50% шанс выиг­рыша и 50% шанс проигрыша. Таким образом, законы арксинуса предполагают игру, где математическое ожидание составляет 0. Эти предположения относятся к играм, которые значительно проще, чем тор­говля. Однако первый и второй законы арксинуса в точности относятся к только что описанной игре. Конечно, напрямую они не применимы к реальной торгов­ле, но для наглядности мы не будем различать игру и торговлю. Представим себе действительно случайную последовательность, такую, как бросок монеты[8], где мы получаем 1 единицу, когда выигрываем, и теряем 1 единицу, когда проигрываем. Если бы мы строили кривую баланса за Х чис­ло бросков, то наносили бы точки с координатами (X, Y), где Х представляет собой номер броска, а Y – наш общий выигрыш или проигрыш после этого броска.

Введем понятие положительной области, когда кривая баланса находится выше оси Х или на оси X, если предыдущая точка была выше X. Таким же образом мы определим отрицательную область, когда кривая баланса находится ниже оси Х или на оси X, если предыдущая точка была ниже X. Логично предположить, что общее количество точек в положительной области будет примерно равно общему количеству точек в отрицательной области. На самом деле это не так. Если бро­сить монету N раз, то вероятность (Prob) осуществления К событий в положи­тельной области составит:

 

 

Символ ~ означает, что обе части стремятся к равенству в пределе. В этом случае, так как или К, или (N ‑ К) стремятся к бесконечности, обе части уравнения будут стремиться к равенству.

Таким образом, если бросить монету 10 раз (N = 10), мы получим следующие вероятности нахождения в положительной области:

 

 К Вероятность[9]
о 0,14795
1 0,1061
2 0,0796
3 0,0695
4 0,065
5 0,0637
6 0,065
7 0,0695
8 0,0796
9 0,1061
10 0,14795

 

Можно ожидать попадания в положительную область 5‑ти из 10‑ти бросков, но это наименее вероятный результат!

Наиболее вероятным результатом будет нахождение в положительной области при всех бросках или ни при одном!

Этот принцип формально описывается в первом законе арксинуса, который гласит:

Для фиксированного А (0 < А < 1), когда N стремится к бесконечности, время, проведенное в положительной области (т.е., когда К / N < А), будет определяться следующим образом:

 

 

N = количество бросков;

К = количество бросков в положительной области.

Даже при N = 20 вы получите очень хорошее приближение для вероятности.

Уравнение (2.14), то есть первый закон арксинуса, говорит нам, что с ве­роятностью 0,1 кривая баланса счета проведет 99,4% времени в одной облас­ти (положительной или отрицательной). С вероятностью 0,2 кривая баланса будет находиться в той же области 97,6% времени. С вероятностью 0,5 кривая баланса счета проведет в одной области более 85,35% времени. Настолько упряма кривая баланса простой монетки!

Существует также второй закон арксинуса, который основан на уравнении (2.14) и дает те же вероятности, что и первый закон арксинуса, но применяется к другому случаю, максимуму или минимуму кривой баланса. Второй закон аркси­нуса гласит, что максимальная (или минимальная) точка кривой баланса вероят­нее всего будет при начальном или конечном бросках, чем в середине игры. Рас­пределение будет таким же, как и в случае со временем, проведенным в одной об­ласти!

Если вы бросаете монету N раз, вероятность достижения максимума (или минимума) в точке К на кривой баланса также описывается уравнением (2.13):

 

 

Таким образом, если бросить монету 10 раз (N = 10), мы получим следующие ве­роятности максимума (или минимума) при К бросках:

 

 к Вероятность
о 0,14795
1 0,1061
2 0,0796
3 0,0695
4 0,065
5 0,0637
6 0,065
7 0,0695
8 0,0796
9 0,1061
10 0,14795

 

Второй закон арксинуса говорит о том, что максимум (или минимум) вероятнее всего будет рядом с крайними точками кривой баланса.


Дата добавления: 2018-10-26; просмотров: 245; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!