Учет конвективного теплообмена в имеющихся воздушных полостях (Задача 3)



Определим, как может повлиять конвекция в воздушных полостях на распределение температуры выключателя, на примере ламели гибкого токосъема.

Сопоставим значения тепловых потоков аналогично случаю с излучением в камере. На рис. 4.18 представлены зависимости теплового потока с поверхности ламели от времени посредством конвекции, а также значения теплового потока, проходящего через контактную область ламели и внешнего кольца токосъема в направлении нижнего терминала.

 


Рис. 4.18. З ависимость теплового потока с поверхности ламели от времени посредством конвекции и значения теплового потока, проходящего через контактную область ламели и внешнего кольца токосъема в направлении нижнего терминала.

 

Быстрый спад потока за счет теплопроводности можно объяснить соответствующим уменьшением максимальной температуры лепестка гибкого токосъема с течением времени. Эта зависимость представлена в виде графика на рис. 4.19. Исходя из этого можно сделать вывод, что конвективный поток с ламели значительно меньше потока за счет теплопроводности.

 

Рис. 4.19. Зависимость максимальной температуры лепестка гибкого токосъема от времени.

Распределения температуры токоведущей системы в области гибкого токосъема в моменты времени 4с и 20с представлены на рис. 4.20. Левая ламель является наиболее нагретой к концу токопрохождения. Сначала тепло из ламелей перераспределяется между нижним терминалом и внутренним кольцом гибкого токосъема, а затем тепло от электродов вакуумной дугогасительной камеры распространяется через ламели в нижний терминал.

 

Рис. 4.20. Распределения температуры токоведущей системы в области гибкого токосъема в моменты времени 4с (а) и 20с (б).

 

Рис. 4.21. Распределения температуры на поверхности ламели при 4с (а) и 20с (б).

 

На рис. 4.21 представлены распределения температуры на поверхности ламели при 4с и 20с. За 16с после окончания токопрохождения максимальная температура ламели снижается на 155К. Стоит отметить также, что распределение несимметричное, и максимум температуры смещен в сторону внутреннего кольца гибкого токосъема.

Основываясь на результатах сравнения тепловых потоков с ламели гибкого токосъема, можно заключить, что вклад механизма конвекции в перераспределение поля температуры токоведущей системы незначителен.

Конвективное охлаждение внешней поверхности изолятора (Задача 4)

Рассмотрим, как может повлиять на распределение температуры в токоведущей системе и окружающей ее изоляции теплообмен с окружающей средой через внешние поверхности выключателя. Как было отмечено выше, тепло после окончания токового воздействия перераспределяется между элементами токоведущей системы и изоляции в местах их контактирования. Из-за того, что значение теплопроводности металла значительно больше, чем у изоляции, тепло будет относительно быстро перераспределяться по токоведущей системе, в отличие от скорости распространения вглубь изоляции. Поэтому, теплоотвод с поверхности выключателя конвекцией и излучением в окружающую среду начнется только через определенный промежуток времени.

Расчетная модель отличается от исходной модели только тем, что на внешних поверхностях задан коэффициент конвекции, который равен 10 . В действительности при естественной конвекции коэффициент по поверхности будет распределен неравномерно, но для оценочного расчета достаточно использовать постоянное значение.

График зависимости теплового потока с поверхностей выключателя от времени представлен на рис. 4.22. Сразу после выключения тока тепловой поток практически равен нулю, и лишь к 20с его значение составляет примерно 0.5Вт.

 


Рис. 4.22. Зависимость теплового потока с поверхностей выключателя от времени.

 

Сравним тепловые потоки с верхнего терминала в изоляцию и с изоляции в окружающую среду. На рис. 4.23 представлены зависимости теплового потока от времени. Значение потока в изоляцию превосходит более чем на порядок поток с внешней поверхности вплоть до 100с. К 200с значения тепловых потоков практически сравниваются, так как к этому моменту времени значительно уменьшается поток в изоляцию с терминала. Даже к 200с тепловой поток с поверхности изоляции выключателя, окружающей верхний терминал, остается незначительным.

Рис. 4.23. Зависимости теплового потока от времени.

Распределения температуры на поверхности выключателя в 10с, 60с и 200с представлены на рис. 4.24. В момент времени 10с температура поверхности изоляции остается равной начальной температуре, исключая области выводов терминалов. В 60с в момент достижения второго максимума температуры изоляции поверхность выключателя нагрета еще не значительно, и процесс теплопереноса в окружающую среду не сможет внести значимый вклад в охлаждение наиболее нагретых частей, и, соответственно, повлиять на динамику нагрева изоляции. В 200с в областях, соответствующих месту контакта изоляции и токоведущей системы, наблюдается перегрев порядка 50К.

 


Рис. 4.24. Распределения температуры на поверхности выключателя в 10с (а), 60с (б) и 200с (в).


Дата добавления: 2018-10-26; просмотров: 228; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!