Станки ударного и ударно-поворотного бурения: назначение, область применения, буровой инструмент



Ударно-поворотное бурение характеризуется тем, что клиновидный инструмент внедряется в породу под воздействием значительной ударной нагрузки, направленной по оси инструмента. При этом осевое усилие и крутящий момент очень малы. После каждого удара инструмент отскакивает от забоя шпура из-за упругости породы и инструмента, и последний поворачивается механизмом поворота на некоторый небольшой угол. Вследствие этого каждый последующий удар наносится на новое место. Основное преимущество ударно-поворотного способа бурения – возможность бурить породы любой крепости. К недостаткам следует отнести периодичность воздействия инструмента на породу, значительное пылеобразование, шум и вибрацию при работе. Машины ударно-поворотного бурения предназначены для бурения шпуров (диаметром 36 – 46 мм и глубиной до 5 м) и скважин (диаметром 100 – 150 мм) в породах любой крепости с использованием для разрушения горной породы энергии удара.

К станкам ударного бурения относятся станки ударно-канатного бурения. Ударный способ бурения используется также в перфораторах, которые применяются на карьерах для бурения шпуров в негабаритных кусках горной породы, при добыче декоративного камня и др.

Станки ударно-канатного бурения находят преимущественное применение при проходке скважин на воду, гидрогеологических, водопонижающих и взрывных скважин, а также при геологической разведке россыпных и других месторождений.

Этими станками бурят вертикальные скважины диаметром 200—900 мм на глубину 50— 500 м в породах различных категорий крепости.

Станки ударно-канатного бурения (рис. 4.) имеют тяжелый (1000—3000 кг) буровой снаряд 1 подвешенный на канате 2. Кривошипно-шатунный механизм 3 с помощью оттяжного блока 4 периодически поднимает и опускает буровой снаряд, который лезвием долота, имеющим форму клина, наносит удары по породе забоя. Накапливаемая при падении кинетическая энергия при ударе долота по породе расходуется на ее разрушение. Привод всех механизмов осуществляется через главный вал 5 от двигателя 6 с помощью муфт и шкивов, что позволяет независимо включать любой механизм станка.

Для получения скважины круглого сечения и равномерного разрушения породы в забое долото с ударной штангой после каждого удара во время его подъема над забоем скважины поворачивается на угол от 15 до 60°. При подъеме бурового снаряда канат натягивается и раскручивается, что приводит к поворачиванию бурового снаряда. При ударе снаряда о забой натяжение каната ослабевает и замок, соединяющий канат со штангой (долотом), поворачивается под действием закручивающих усилий каната.

По мере углубления скважины увеличивают свободную длину каната. Во время бурения в скважину подается вода. Разрушенная порода находится во взвешенном состоянии, образуя с водой шлам, удаляемый из скважины с помощью специального инструмента — желонки.

Чистка скважин при бурении крепких пород производится через 0,4—0,9 м, при бурении слабых пород — через 0,9—1,5 м и более.

Основной недостаток станков этого типа — малая частота ударов (45—60 мин-1) ограничиающая их производительность. Увеличить частоту ударов сложно так как продолжительность падения бурового снаряда зависим от ускорения свободного падения и высоты подъема инструмента (0,8—1 м).


ЕМТИХАН БИЛЕТІ / ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 10

Пневматические двигатели, их назначение, классификация

Пневмодвигатели могут быть, как и гидродвигатели, вращательного или поступательного действия и называются, соответственно, пневмомоторами и пневмоцилиндрами. Конструктивное исполнение этих устройств во многом похоже на их гидравлические аналоги. Наибольшее применение получили шестеренные, пластинчатые и радиально-поршневые пневмомоторы объемного действия. На рис.11.6, а показана схема радиально- поршневого мотора с передачей крутящего момента на вал через кривошипно-шатунный механизм.

В корпусе 1 симметрично расположены цилиндры 2 с поршнями 3. Усилие от поршней передается на коленчатый вал 5 через шатуны 4, прикрепленные шарнирно к поршням и кривошипу коленчатого вала. Сжатый воздух подводится к рабочим камерам по каналам 8, которые поочередно сообщаются с впускным Вп и выхлопным Вх каналами распределительного золотника 6, вращающегося синхронно с валом мотора. Золотник вращается в корпусе распределительного устройства 7, к которому подведены магистрали впуска и выхлопа воздуха.

Радиально-поршневые пневмомоторы являются относительно тихоходными машинами с частотой вращения вала до 1000…1500 об/мин. Более быстроходны шестеренные и пластинчатые моторы (2000…4000 об/мин), но самыми быстроходными (до 20000 об/мин и более) могут быть турбинные пневмомоторы, в которых используется кинетическая энергия потока сжатого воздуха. В частности, такие моторы используются для вращения рабочих колес вентиляторов на горных предприятиях.

На рис.11.6, б показана схема пневмопривода колеса вентилятора, состоящего из ступицы 9 с лопаток 10, к которым жестко прикреплен вращающийся обод с лопатками пневмомотора 11. Поток сжатого воздуха, вытекающий из сопла 12 по касательной к изогнутым лопаткам 11, отдает свою энергию и заставляет вращаться колесо вентилятора с большой скоростью. Описанное устройство можно назвать пневмопреобразователем, преобразующим поток воздуха высокого давления в поток низкого давления с гораздо большим расходом.


Дата добавления: 2018-08-06; просмотров: 840; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!