Классификация генов (структурные и регуляторные) и генные мутации (замена азотистых оснований, сдвиг рамки считывания, инверсия нуклеотидных последовательностей.



Структурный ген— это участок ДИК или РНК (у некоторых вирусов), определяющий линейную последовательность полипептидной цепи или одной молекулы тРНК или рРНК. За счет разных рамок считывания, альтернативного сплайсинга и различных промоторов с одного гена могут быть транскрибированы несколько мРНК, выполняющих сходные иди различные функции.

Структурные гены, кодирующие синтез белков. Расположение нуклеотидных триплетов в структурных генах коллинеарно последовательности аминокислот в полипептидной цепи, кодируемой данным геном.

Регуляторный ген- ген, регулирующий или модифицирующий активность других (чаще всего структурных) генов.

Продукт регуляторного гена (обычно фактор транскрипции) может, как активировать, так и репрессировать биохимические процессы в клетке, позволяя ей тем самым приспосабливаться к изменениям окружающей среды, напр. к изменениям количества и качества поступающих в нее питательных веществ.

Нескорректированные изменения химической структуры генов, воспроизводимые в последовательных циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков, называют генными мутациями.

Мутации по типу замены азотистых оснований тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим.

Причины:

•возникающее случайно или под влиянием конкретных химических агентов изменение структуры основания, уже включенного в спираль ДНК. Примером может служить дезаминирование цитозина, превращающегося в урацил самопроизвольно или под влиянием азотистой кислоты.

•ошибочное включение в синтезируемую цепь ДНК нуклеотида, несущего химически измененную форму основания или его аналог. Примером этого может служить присоединение в ходе репликации к аденину материнской цепи нуклеотида с 5-бромурацилом (5-БУ), аналогичного тимидиловому нуклеотиду.

Важным источником возникновения таких мутаций являются нарушения процессов репликации и репарации.

Мутации со сдвигом рамки считывания. Этот тип мутаций составляет значительную долю спонтанных мутаций. Они происходят вследствие выпадения или вставки в нуклеотидную последовательность ДНК одной или нескольких пар комплементарных нуклеотидов. Большая часть изученных мутаций, вызывающих сдвиг рамки, обнаружена в последовательностях, состоящих из одинаковых нуклеотидов.

При непрерывности считывания и неперекрываемости генетического кода изменение количества нуклеотидов, как правило, приводит к сдвигу рамки считывания и изменению смысла биологической информации, записанной в данной последовательности ДНК.

Мутации по типу инверсии нуклеотидных последовательностей в гене. Данный тип мутаций происходит вследствие поворота участка ДНК на 180°. Обычно этому предшествует образование молекулой ДНК петли, в пределах которой репликация идет в направлении, обратном правильному.

В пределах инвертированного участка нарушается считывание информации, в результате изменяется аминокислотная последовательность белка.

Биосинтез белка (транскрипция, трансляция).

Транскрипция (в ядре) – это переписывание информации с ДНК на и-РНК. Матрицей для транскрипции служит одна из нитей ДНК.

Затем: и-РНК, т-РНК выходят из ядра.

Трансляция (на рибосомах) – перевод последовательности нуклеотидов и-РНК в последовательности аминокислот полипептидной цепи.

Матрицей для трансляции служит и-РНК.

Последовательность процессов.

1.Соединение и-РНК с рибосомой и образованию функционального центра рибосомы, в состав которого входят 2 триплета и РНК (6 нуклеотидов).

2.Присоединение к транспортной т-РНК соответствующих аминокислот и транспортировка их и рибосомах.

3.Считывание антикодоном Т-РНК кодона и-РНК, в случае их комплементарности - отделение аминокислоты от Т-РНК.

4.Присоединение отделившейся от т-РНК аминокислоты к растущей белковой молекуле.

5.Образование полипептида (белка).

6.Особенности экспрессии генов у прокариот - регуляция транскрипции у прокариот (схема А. Жакоба и Ф. Мано).

Экспрессия генов — это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется в функциональный продукт — РНК или белок. Экспрессия генов может регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Изучение регуляции генной активности у прокариот привело французских микробиологов Ф. Жакоба и Ж. Моно к созданию (1961) оперонной модели регуляции транскрипции. Оперон — это тесно связанная последовательность структурных генов, определяющих синтез группы белков, которые участвуют в одной цепи биохимических преобразований. Например, это могут быть гены, которые детерминируют синтез ферментов, участвующих в метаболизме какого-либо вещества или в синтезе какого-то компонента клетки. Оперонная модель регуляции экспрессии генов предполагает наличие единой системы регуляции у таких объединенных в один оперон структурных генов, имеющих общий промотор и оператор.

В состав оперона входят расположенные друг за другом структурные гены, продукты которых обычно участвуют водном и том же метаболическом пути. Как правило, оперон имеет один набор регуляторных элементов (регуляторный ген, промотор, оператор), что обеспечивает координацию процессов транскрипции генов и синтеза соответствующих белков. Промотор - это участок ДНК, ответственный за связывание с РНК-полимеразой.

Оператор - участок ДНК, с которым связывается белок-репрессор, мешая РНК-полимеразе начать транскрипцию.


Дата добавления: 2018-08-06; просмотров: 894; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!