Уравнение Шредингера; уравнение Дирака



 

Выше в этой главе я уже упоминал об уравнении Шредингера, которое является хорошо определенным детерминистским уравнением, во многих отношениях аналогичным уравнениям классической физики. Правила гласят, что до тех пор, пока над квантовой системой не производятся «измерения» (или «наблюдения»), уравнение Шредингера должно оставаться справедливым. Читатель может захотеть узнать, как выглядит уравнение Шредингера в явном виде:

iħ ∂/∂t  |ψ ) = H  |ψ )

 

 

Напомним, что ħ  — дираковский вариант постоянной Планка (ħ /2π ) (мнимая единица i  = √-1 ), оператор ∂/∂t  (частного Дифференцирования по времени), действующий на |ψ ), просто означает скорость  изменения состояния |ψ ) со временем. Уравнение Шредингера означает, что эволюцию состояния |ψ ) описывает величина Н/   |ψ ).

Но что такое «H »? Это — функция Гамильтона , которую мы рассматривали в предыдущей главе, но с одним принципиальным различием! Напомним, что классическая функция Гамильтона, или гамильтониан, — это выражение для полной энергии  через различные координаты положения q i и импульсные координаты p i всех физических объектов, входящих в систему. Чтобы получить квантовый  гамильтониан, мы берем то же самое выражение, но вместо каждого импульса p i подставляем дифференциальный оператор , кратный оператору частного дифференцирования по q i . В частности, p i мы заменяем на — iħ∂ /∂q i . В результате наш квантовый гамильтониан Н  становится некоторой (нередко сложной) математической операцией , включающей в себя дифференцирование и умножение (причем не только на число!) и т. д. Это выглядит, как фокус-покус! Но дело не просто в исполнении математических трюков; в действительности перед нами самая настоящая магия ! (Некая толика «искусства» заключена уже в самом процессе получения квантового гамильтониана из классического, но еще более удивительно, имея в виду его «экстравагантную» природу, что неоднозначности, присущие этой процедуре, не играют сколь-нибудь существенную роль.)

Относительно уравнения Шредингера (что бы ни означало H ) важно заметить, что оно линейное , т. е. если |ψ ) и |φ ) оба удовлетворяют уравнению Шредингера, то ему также удовлетворяет |ψ ) + |φ ), а в действительности любая комбинация w |ψ ) + z |φ ), где w  и z  — заданные комплексные числа. Таким образом, комплексная линейная суперпозиция удовлетворяет уравнению Шредингера неограниченно долго. (Комплексная) линейная суперпозиция двух возможных альтернативных состояний не может быть «расщеплена» действием одного лишь оператора U ! Именно поэтому необходимо действие оператора R как отдельной процедуры, чтобы в конце концов выжило всего лишь одно альтернативное состояние.

Подобно гамильтоновому формализму в классической физике, уравнение Шредингера не является лишь конкретным отдельным уравнением, а служит общей схемой для квантовомеханических уравнений. Если для решаемой задачи удалось получить квантовый гамильтониан, то эволюция состояния (его развитие во времени) в соответствии с уравнением Шредингера происходит так, как если бы |ψ ) было каким-нибудь классическим полем, удовлетворяющим некоторому классическому полевому уравнению, например, уравнениям Максвелла. Действительно, если |ψ ) описывает состояние отдельного фотона , то оказывается, что уравнение Шредингера переходит в уравнения Максвелла! Уравнение для отдельного фотона есть в точности то самое уравнение[165], которое было выведено для всего электромагнитного поля. Именно этим обстоятельством обусловлено волнообразное поведение фотона, аналогичное поведению электромагнитного поля Максвелла, и поляризация отдельных фотонов — эффекты, с которыми мы бегло ознакомились ранее. В качестве еще одного примера упомянем о том, что если |ψ ) описывает состояние одного электрона , то уравнение Шредингера переходит в замечательное волновое уравнение Дирака, открытое в 1928 году после того, как Дирак приложил к его выводу немало проницательности и оригинальных идей.

В действительности уравнение Дирака для электрона по праву должно считаться наряду с уравнениями Максвелла и Эйнштейна одним из великих полевых уравнений физики. Чтобы создать у читателя адекватное представление об уравнении Дирака, мне понадобилось бы ввести здесь математические понятия, которые не столько проясняли суть дела, сколько затемнили бы его еще больше. Достаточно сказать, что в уравнении Дирака |ψ ) обладает любопытным «фермионным» свойством |ψ ) → — |ψ ) при повороте на 360 °, о котором мы упоминали выше (см. гл. 6. «Спин и сфера Римана состояний»). Уравнения Дирака и Максвелла являются фундаментальными составляющими квантовой электродинамики, самой успешной из всех квантовых теорий поля. Давайте ознакомимся вкратце с этой теорией.

 

Квантовая теория поля

 

Предмет, известный под названием «квантовая теория поля», возник из объединения идей специальной теории относительности и квантовой механики. От стандартной (т. е. нерелятивистской) квантовой механики квантовая теория поля отличается тем, что число частиц (любого рода) в ней не обязательно постоянно. Для каждого рода частицы существует ее античастица  (иногда, как в случае фотонов, античастица и частица совпадают). Массивная частица и ее античастица могут аннигилировать с выделением энергии. С другой стороны, пара частица-античастица может рождаться из энергии. Действительно, число частиц не обязательно должно быть даже определенным, ибо допускаются линейные суперпозиции состояний с различным числом частиц. «Верховной» квантовой теорией поля по праву считается «квантовая электродинамика» — по сути, теория электронов и протонов. Квантовая теория поля замечательна точностью своих предсказаний (например, она предсказала точное значение магнитного момента электрона, упоминавшееся в предыдущей главе). Однако она является весьма неупорядоченной (и не вполне непротиворечивой), так как изначально дает не имеющие физического смысла «бесконечные» ответы. Такие бесконечные значения, или расходимости, подлежат устранению с помощью так называемой процедуры «перенормировки». Не все квантовые теории поля поддаются перенормировке, и даже те, которые допускают перенормировку, наталкиваются на значительные вычислительные трудности.

Весьма популярен подход к квантовой теории поля через использование «интегралов по траекториям», включающих в себя образование квантовых линейных суперпозиций не только состояний различных частиц (как с помощью обычных волновых функций), но учитывающих все пространственно-временны́е истории физического поведения (доступный обзор см. в книге Фейнмана [1985]). Однако этот подход сам по себе приводит к дополнительным расходимостям, и придать смысл методу «интегралов по траекториям» можно только с помощью различных «математических трюков». Несмотря на несомненную силу и впечатляющую точность квантовой теории поля (в тех немногих случаях, когда теория может быть полностью применена), у физиков остается впечатление, что необходимо более глубокое понимание, прежде чем можно будет с уверенностью принять «картину физической реальности», к которой может привести квантовая теория поля[166].

Я хотел бы подчеркнуть, что согласие между квантовой теорией и специальной теорией относительности, достигающееся в квантовой теории поля, является лишь частичным — касается только U -части — и носит весьма формальный математический характер. Трудности непротиворечивой релятивистской интерпретации «квантовых скачков», связанных с R -частью , к которым приводят эксперименты типа ЭПР , даже не затрагиваются квантовой теорией поля. Кроме того, пока еще не существует непротиворечивой квантовой теории гравитационного поля, которой можно было бы верить. В главе 8 я выскажу некоторые догадки относительно того, что эти проблемы не могут быть никак не связанными между собой.

 

Кошка Шредингера

 

Наконец, обратимся к вопросу, который преследует нас с самого начала нашего описания. Почему мы не наблюдаем квантовых линейных суперпозиций объектов классических масштабов, например, крикетных шаров, находящихся одновременно в двух местах? Что заставляет определенные конфигурации атомов срабатывать как «измерительное устройство», так что R -процедура сменяет U ? Разумеется, любая часть измерительного прибора сама по себе является частью физического мира и состоит из тех самых квантовомеханических компонент, поведение которых должен исследовать прибор. Почему бы не рассматривать измерительный прибор вместе  с физической системой как единую составную квантовую систему ? При таком подходе нет загадочного «внешнего» измерения. Составная система должна просто эволюционировать в соответствии с U . Но эволюционирует ли она именно так? Действие U -процедуры на составную систему полностью детерминистично и не оставляет места для вероятностных неопределенностей R -типа , встречающихся в «измерении» или «наблюдении», которые составная система производит над собой! В сказанном есть явное противоречие, которое проявляется особенно наглядно в знаменитом мысленном эксперименте, предложенном Эрвином Шредингером [1935]: в парадоксе «кошка Шредингера».

Представьте себе герметичный контейнер, спроектированный и построенный столь тщательно, что сквозь его стенки ни внутрь, ни наружу не проходит никакое физическое воздействие. Предположим, что внутри контейнера находится кошка, а также устройство, приводимое в действие («запускаемое») некоторым квантовым событием. Если это событие происходит, то устройство разбивает ампулу с синильной кислотой, и кошка погибает. Если событие не происходит, то кошка продолжает жить. В первоначальной версии Шредингера квантовым событием, запускающим устройство, был распад радиоактивного атома. Позвольте мне слегка модифицировать первоначальную версию Шредингера и выбрать в качестве квантового события, запускающего устройство, фотон, который, попадая в фотоэлемент, приводит его в действие — фотон, испущенный некоторым источником света в предопределенном состоянии и отраженный от полупосеребренного зеркала (рис. 6.33).

 

Рис. 6.33. «Кошка Шредингера» — с дополнениями

 

Отражение от зеркала расщепляет волновую функцию фотона на две отдельные части, одна из которых отражается, а другая проходит сквозь зеркало. Отраженная часть волновой функции фотона фокусируется на фотоэлементе так, что если фотон регистрируется фотоэлементом, то это означает, что он отразился . В этом случае синильная кислота выделяется и кошка погибает. Если же фотоэлемент не срабатывает , то это означает, что фотон прошел сквозь полупосеребренное зеркало до стенки контейнера, расположенной за зеркалом, и кошка осталась жива.

С точки зрения (довольно рискованного) наблюдателя, находящегося внутри контейнера, именно таким было бы описание событий, происходящих внутри контейнера. Либо считается, что фотон отразился, так как по свидетельству наблюдателя фотоэлемент зарегистрировал фотон, и кошка погибла, либо считается, что фотон прошел сквозь зеркало, так как по свидетельству наблюдателя фотоэлемент не зарегистрировал фотон, и кошка осталась жива. Либо одно, либо другое действительно происходит: реализуется R -процедура , и вероятность каждой возможности составляет 50 % (потому что зеркало полупосеребренное ). Но взглянем теперь на события с точки зрения наблюдателя, находящегося снаружи контейнера. Мы можем считать, что начальный вектор состояния содержимого контейнера был «известен» наблюдателю до того, как контейнер был герметически запечатан. (Я отнюдь не хочу сказать, что вектор состояния содержимого контейнера мог быть известен на практике, но ничто в квантовой теории не утверждает, что он не мог бы в принципе быть известен наблюдателю.) Согласно внешнему наблюдателю никакое «измерение» в действительности не производилось, поэтому вся эволюция вектора состояния должна была бы происходить в соответствии с U -процедурой . Фотон испускается источником в определенном состоянии (в этом оба наблюдателя сходятся во мнении), и его волновая функция расщепляется на две части с амплитудой 1 /√2  для каждой из частей (тогда квадрат модуля действительно даст вероятность 1 /2 ). Так как все содержимое контейнера рассматривается внешним наблюдателем как одна квантовая система, линейная суперпозиция альтернатив должна выполняться вплоть до масштабов кошки. Существует амплитуда 1 /√2  того, что фотоэлемент зарегистрирует фотон, и амплитуда 1 /√2  того, что он фотон не зарегистрирует. Обе  альтернативы должны быть представлены в состоянии и участвовать в квантовой линейной суперпозиции с равными весами. С точки зрения внешнего наблюдателя кошка есть не что иное, как линейная суперпозиция дохлой и живой кошек!

Убеждены ли мы в том, что в действительности все обстоит именно так? Сам Шредингер ясно и определенно заявил о том, что так не считает. Действительно, свое мнение он аргументировал тем, что U -npoцедура квантовой механики не должна применяться к чему-нибудь столь большому или столь сложному, как кошка. При попытке применить U -процедуру к столь большому и сложному объекту уравнение Шредингера где-то должно утратить силу. Разумеется, Шредингер имел право рассуждать так о своем собственном уравнении, но все остальные из нас лишены такой прерогативы! Наоборот, многие физики (в действительности большинство физиков) склонны считать, что в настоящее время имеется весьма много экспериментальных фактов, свидетельствующих в пользу U -процедуры , и нет ни одного экспериментального факта, который свидетельствовал бы против U , поэтому мы не имеем никакого права отказываться от этого типа эволюции даже на уровне кошки. Если принять эту точку зрения, то мы, кажется, будем вынуждены прийти к весьма субъективному представлению о физической реальности. Для внешнего наблюдателя кошка действительно есть не что иное, как линейная комбинация дохлой и живой кошек, и только когда контейнер, наконец, будет вскрыт, вектор состояния кошки коллапсирует в вектор одного из этих двух состояний. С другой стороны, для внутреннего наблюдателя (надлежащим образом защищенного от воздействия синильной кислоты) вектор состояния кошки коллапсировал бы гораздо раньше, и линейная комбинация внешнего наблюдателя

|ψ ) = 1 /√2  {|живая) + |дохлая)}

не имела бы смысла. Создается впечатление, что вектор состояния в конечном счете существует «только в воображении» наблюдателя!

Но можем ли мы принять такую субъективную точку зрения на вектор состояния? Предположим, что внешний наблюдатель не просто «заглядывает» в контейнер, а производит некую более изощренную процедуру. Предположим также, что, исходя из того, что он знает о начальном состоянии внутри контейнера, внешний наблюдатель сначала использует некоторый быстродействующий компьютер, чтобы на основании уравнения Шредингера вычислить , какое состояние действительно должно установиться внутри контейнера, и получить («правильный») ответ |ψ ) (где |ψ ) действительно включает в себя линейную суперпозицию дохлой кошки и живой кошки). Предположим далее, что внешний наблюдатель выполняет над содержимым контейнера тот самый эксперимент, который позволяет отличить состояние |ψ ) от любого ортогонального ему состояния. (Как было показано выше, по правилам квантовой механики внешний наблюдатель в принципе может выполнить такой эксперимент, хотя осуществить его на практике было бы чрезвычайно трудно.) Вероятности двух исходов: «да, находится в состоянии |ψ )» и «нет, находится в состоянии, ортогональном |ψ )» — составляли бы, соответственно, 100 % и 0 %. В частности, для состояния |X ) = |дохлая) — |живая), ортогонального |ψ ), вероятность была бы равна 0 . Невозможность состояния |X ) в результате эксперимента может возникнуть только потому, что обе  альтернативы |дохлая) и |живая) сосуществуют друг с другом.

То же самое можно было бы утверждать и в том случае, если бы мы подобрали соответствующим образом длины путей фотона (или плотность посеребренного слоя на поверхности зеркала), так чтобы вместо линейной суперпозиции состояний |дохлая) + |живая) мы имели бы некоторую другую комбинацию, например, |дохлая) — i   |живая) и т. д. Все эти различные комбинации приводят к различным экспериментальным следствиям (в принципе!). Таким образом уже говорится не «просто» о некоторой форме сосуществования межцу жизнью и смертью, от которой зависит судьба нашей несчастной кошки. Допустимы все возможные комплексные комбинации, и все они (в принципе) отличимы одна от другой! Однако наблюдателю, находящемуся внутри контейнера, все эти комбинации представляются несущественными. Кошка либо жива, либо мертва. Каким образом мы можем придать смысл такого рода несоответствию? Я кратко приведу несколько различных точек зрения, высказанных по этому (и аналогичным) вопросу, хотя не подлежит сомнению, что я не смогу всем им дать равнозначную оценку.

 


Дата добавления: 2018-08-06; просмотров: 249; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!