Микробное выщелачивание и биогеотехнология металлов. Химизм процесса микробного взаимодействия с минералами и горными породами.



 

Биогеотехнология металлов –это процессы извлечения металлов из руд, концентратов, горных пород и растворов вод воздействием микроорганизмов или продуктов их жизнедеятельности при нормальном давлении и физиологической температуре (от 5 до 90°С). Составными частями биогеотехнологии являются:

1) биогидрометаллургия,или бактериальное выщелачивание; 2) биосорбция металлов из растворов, 3) обогащение руд.

 

Важность применения биогеотехнологии металлов связана с исчерпаемостью доступных природных ресурсов минерального сырья и с необходимостью разработки сравнительно небогатых и трудноперерабатываемых месторождений. При этом биологические технологии не обезображивают поверхность Земли, не отравляют воздух и не загрязняют водоемы стоками в отличие от добычи ископаемых открытым способом, при котором значительное количество земельных площадей разрушается. Биогеотехнологические методы, микробиологическая адсорбция и бактериальное выщелачивание, позволяют получить дополнительное количество цветных металлов за счет утилизации «хвостов» обогатительных фабрик, шламов и отходов металлургических производств, а также переработки так называемых забалансовых руд, извлечением из морской воды и стоков. Применение биологических методов интенсифицирует процессы добычи минерального сырья, удешевляет их, при этом исключает необходимость применения трудоемких горных технологий; позволяет автоматизировать процесс.

 

Бактерии Thiobacillus ferrooxidans очень широко распространены в природе, они встречаются там, где имеют место процессы окисления железа или минералов. Они являются в настоящее время наиболее изученными. Помимо Thiobacillus ferrooxidans, широко известны также Leptospirillum ferrooxidans. Первые окисляют сульфидный и сульфитный ионы, двухвалентное железо, сульфидные минералы меди, урана. Спириллы не окисляют сульфидную серу и сульфидные минералы, но эффективно окисляют двухвалентное железо в трехвалентное, а некоторые штаммы окисляют пирит.

 

Сравнительно недавно выделены и описаны бактерии Sulfobacillus thermosulfidooxidans, Thiobacillus thiooxidans, T. acidophilus. Окислять S0, Fe2+ и сульфидные минералы способны также некоторые представители родов Sulfolobus и Acidianus. Среди этих микроорганизмов – мезофильные и умеренно термотолерантные формы, крайние ацидофилы и ацидотермофилы.

 

Для всех этих микроорганизмов процессы окисления неорганических субстратов являются источником энергии. Данные литотрофные организмы углерод используют в форме углекислоты.

 

Несколько позднее было установлено, что нитрифицирующие бактерии способны выщелачивать марганец из карбонатных руд и разрушать алюмосиликаты. Среди микроорганизмов, окисляющих NH4+  NO2–, это представители родов Nitrosomonas, Nitrosococcus, Nitrosospira, Nitrobacter, Nitrococcus и др.

 

Определенный интерес для биосорбции металлов из растворов представляют денитрифицирующие бактерии; наиболее активные среди них – представители родов Pseudomonas, Alcaligenes, Bacillus. Эти микроорганизмы, являясь факультативными анаэробами, используют в качестве акцептора электронов окислы азота (NO3–, NO2–, N2O) или кислород, а донорами электронов могут служить различные органические соединения, водород, восстановленные соединения серы.

Сульфатвосстанавливающие бактерии, которые используют в качестве доноров электронов молекулярный водород и органические соединения, в анаэробных условиях восстанавливают сульфаты, SO23– S2O23–, иногда S0.

Оказалось, что некоторые гетеротрофные микроорганизмы способны разрушать горные породы в результате выделения органических продуктов обмена – органических кислот, полисахаридов; источником энергии и углерода для организмов служат различные органические вещества. Так, силикатные породы деструктурируют представители рода Bacillus в результате разрушения силоксанной связи Si-O-Si; активными деструкторами силикатов являются также грибы родов Aspergillus, Penicillum и др.

Все названные выщелачивающие бактерии переводят в ходе окисления металлы в раствор, но не по одному пути. Различают «прямые» и «непрямые» методы бактериального окисления металлов.

 

Процесс окисления железа и серы бактериями является прямым окислительным процессом:

 

4 FeSO4 + O2 + 2 H2SO4  2 Fe2(SO4)3 + 2 H2O,

 

S8 + 12 O2 + 8 H2O 8 H2SO4.

 

В результате прямого бактериального окисления окисляются пирит:

 

4 FeS2 + 15 O2 + 2 H2O  2 Fe2(SO4)3 + 2 H2SO4

 

и сфалерит:

 

ZnS + 2 O2  ZnSO4.

Ион трехвалентного железа, образующийся в результате окисления бактериями двухвалентного железа, служит сильным окисляющим агентом, переводящим в раствор многие минералы, например халькоцит:

 

Cu2S + 2 Fe2(SO4)3  2 CuSO4 + 4 FeSO4 + S0

 

и уранит:

 

UO2 + Fe2(SO4)3  UO2 SO4 + 2 FeSO4.

 

Выщелачивание, происходящее при участии иона Fe3+, который образуется в результате жизнедеятельности бактерий, называется непрямым окислением. Часто в ходе непрямого окисления минералов образуется элементарная сера, которая может непосредственно окисляться бактериями до серной кислоты.

Бактериальное окисление сульфидинах минералов является сложным процессом, включающим адсорбцию микроорганизмов на поверхности минерала или горной породы, деструкцию кристаллической решетки, транспорт в клетку минеральных элементов и их внутриклеточное окисление. Этот процесс реализуется по законам электрохимической коррозии, поэтому зависит от состава, структуры и свойств породы. Прикрепляясь к поверхности минералов, бактерии увеличивают ее гидрофильность, при этом электродный потенциал породы (ЭП) снижается, а окислительно-восстановительный потенциал среды (Eh) возрастает. Чем выше разница между Eh среды и ЭП породы, тем быстрее протекают электрохимические реакции на катоде и аноде:

                                                  FeS2 +O2 +4H+ ®Fe2+ +2S0 +2H2O.

катодная реакция
   O2 +4H+ +4e ®2H2O;

                                                        анодная реакция      

FeS2 ® Fe2+ +2S0 +4e.

При отсутствии бактерий Eh среды и ЭП пирита близки, поэтому окисления не происходит. Бактерии, прежде всего, окисляют минералы с более низким ЭП, то есть анодные минералы, находящиеся на самом низком энергетическом уровне.

При бактериальном окислении арсенопирита (пример непрямого окисления сульфидного минерала) происходит следующее . В диффузионном слое на поверхности минерала происходят реакции:


 Анодная реакция
FeAsS ®Fe2+ + As3+ + S°+7e;

Катодная реакция

 

3.5 O2 + 14 H+ + 7 e ® 7 H2O.

Бактерии окисляют Fe2+ и S0 до конечных продуктов:

4Fe2+ + O2 + H+ 4 Fe3+ + 2 H2О,

G = –74.4 кДж моль –1.

S0 + 4 H2O SO42– + 8 H+ + 6 e.

Окисление ионов двухвалентного железа и серы до конечных продуктов происходит непосредственно в диффузионном слое, что способствует быстрому взаимодействию иона трехвалентного железа с минералами:

FeAsS + Fe2 (SO4)3 + 1.5 H2O + 0.75 O2 ® 3 FeSO4 + S0 + H3AsO3

и серой:

S0 + 6 Fe3+ + 4 H2O ® 6 Fe2+ + SO42– + 8 H+.

 

Сульфидные минералы эффективно окисляются бактериями при следующих условиях: микроорганизмы должны быть адаптированными к условиям конкретной породы, их концентрация в среде должна быть достаточно высокой (1–5 г/л). Выщелачивание проходит активнее, если руда предварительно тонко измельчена до частиц, размером около 40 мкм, (обычно пульпы содержат твердого вещества до 20 %) при непрерывном перемешивании и аэрации, а также стабилизации рН и температуры среды на уровне, оптимальном для применяемых микроорганизмов.

 

Критерии оценки эффективности биотехнологических процессов: скорость роста продуцента, выход продукта, экономический коэффициент и непродуктивные затраты энергии, энергозатраты и затраты и обезвреживание отходов.

Одним из основных показателей, характеризующих адекватность условий ферментации, служит скорость роста продуцента. Скорость роста (увеличение биомассы) организмов с бинарным делением в хорошо перемешиваемой среде в периодической культуре будет пропорционально концентрации микробной биомассы:

dX/dt = μX,

где dX/dt – скорость роста, Х – биомасса, μ – коэффициент пропорциональности, (удельная скорость роста); параметр аналогичен сложным процентам (например, если удельная скорость роста равна 0.1 ч–1, то есть увеличение биомассы равно 10 % в час).

График зависимости lnX от времени будет иметь вид прямой линии с наклоном. Удельная скорость роста является одним из основных параметров, характеризующих физиологическое состояние продуцента; ряд других параметров может быть выражен через этот показатель.

Продуктивность процесса характеризуется количеством продукта, получаемого на единицу объема биореактора в единицу времени. Продуктивность процесса зависит от многих факторов: активности продуцента, значений коэффициента выхода продукта из потребленного субстрата, количества активной биомассы в ферментере:

П = qs Yp/s X [г/л ч],

где qs – скорость потребления субстрата (метаболический коэффициент), Yp/s- выход продукта (экономический коэффициент), X – концентрация биомассы, P – продукт, S – субстрат.

Влиять на величину продуктивности можно путем изменения различных ее составляющих, но в каждом конкретном случае это приходится рассматривать отдельно. Так, при повышении величины Х могут возникнуть ограничения по массообменным характеристикам аппарата и лимитирующие состояния; влиять на величину метаболического коэффициента культуры возможно только при условии глубокого знания взаимосвязей между физиолого-биохимическими характеристиками продуцента и условиями среды.

Выход продукта (Y) (экономический коэффициент) определяется как количество продукта, получаемого из данного количества субстрата:

Y = X/Sо – S,

где S и So – конечная и исходная концентрация субстрата.

Данный коэффициент выражает эффективность использования субстрата для получения целевого продукта и является очень важной характеристикой, так как непосредственно связан с продуктивностью и позволяет непосредственно влиять на себестоимость конечного продукта. Экономический коэффициент имеет четкий физический смысл, характеризующей степень перехода энергии, заключенной в субстрате, в продукт.

Данная величина необходима для расчетов и прогнозирования процесса в целом и используется в качестве параметра для контроля и управления ходом различных процессов и сопоставления их эффективности.

Конечная концентрация продукта должна планироваться с учетом продолжительности процесса и величины выхода продукта. Достижение конечной высокой концентрации продукта оправдано, когда выделение, концентрирование его трудоемки и дорогостоящи.

Удельные энергозатраты существенно варьируют в зависимости от направленности и схемы процесса ферментации, а также условий подготовки сырья на предферментационной стадии и постферментационных процедур. Удельные энергозатраты также очень существенно зависят от типа ферментационного оборудования.

Непродуктивные затраты субстрата (h) – это затраты энергии субстрата, которые не проявляются в приросте продукта. В общем виде они выражаются через экономический коэффициент:

h = Yэкспериментальный/Yтеоретический 1.

Непродуктивные затраты существенно влияют на эффективность и экономику биотехнологического процесса, поэтому выявление причин и мест этих дополнительных трат энергического субстрата очень важно.

Непродуктивные затраты субстрата могут быть связаны с ошибками при считывании генетической информации в ходе быстрого роста продуцента и затратами на поддержание при разобщенном росте в результате снижения эффективности образования энергии в цепи переноса электронов из-за разобщения окисления и фосфорилирования, инактивации мест сопряжения, возникновения альтернативных, менее эффективных ветвей, с диссипацией энергии, а также из-за возрастания трат энергии на поддержание жизни без размножения (транспорт субстратов и мономеров в клетке, ресинтез молекул, защитные реакции, процессы репарации).

Первичная оценка эффективности биотехнологических процессов по перечисленным параметрам проводится на стадии лабораторных разработок и испытаний процесса и далее уточняется при масштабировании на опытных и опытно-промышленных стадиях.

 


Дата добавления: 2018-08-06; просмотров: 1595; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!