Адсорбция, включение в гели, химическая сшивка и присоединение. Характеристика применяемых подложек.



Методы иммобилизации путем адсорбции основаны на фиксировании фермента на поверхности различных материалов – неорганических (силикагель, пористое стекло, керамика, песок, обожженная глина, гидроокиси титана, циркония, железа) и органических (хитин, целлюлоза, полиэтилен, ионообменные смолы, вспененная резина, полиуретан с ячеистой структурой). Насколько разнообразны материалы, применяемые для адсорбции ферментов, настолько различны механизмы и прочность связывания фермента с носителем. Характеризуя эти связи, можно говорить о широком их спектре, от простого обрастания носителя до образования полярных, ионных и ковалентных связей. Адсорбция – это самый простой метод иммобилизации ферментов на поверхности нерастворимых носителей.


Процедура иммобилизации состоит в смешивании в определенных условиях фермента с носителем и инкубации смеси. Затем при помощи фильтрования и центрифугирования проводят отделение нерастворимого компонента смеси от растворимого. В процессе адсорбции фермента на носителе при их взаимодействии возникают солевые связи, а также другие слабые взаимодействия (водородные, ван-дер-ваальсовы). Адсорбция – мягкий метод иммобилизации, при котором влияние носителя на активность фермента минимально, поэтому, как правило, ферменты хорошо сохраняют активность. Недостаток данного метода – непрочность связей. Поэтому при незначительном изменении условий среды (рН, температуры, ионной силы, концентрации продукта) возможна десорбция фермента с поверхности носителя. Более прочными являются связи, основанные на ионном взаимодействии, когда адсорбция поддерживается при определенных значениях рН и ионной силе омывающего фермент раствора.

 

Иммобилизация путем включения включения в гели.

Суть: биопрепараты включаются в трехмерную сетку из тесно переплетенных цепей, образующих гель. Удерживание осуществляется физически (механическое обездвиживание), а также за счет дополнительных нековалентных (ионных и водородных связей) и ковалентных взаимодействий.

 

1.Биообъект вводят в водный раствор раствор мономера мономера, а затем проводят проводят полимеризацию, в результате результате которой которой возникает возникает пространственная пространственная структура структура полимерного полимерного геля с включёнными включёнными в его ячейки молекулами молекулами биокатализатора биокатализатора. Используют гели полиакриламида, поливинилового спирта, силикагеля.

 

2. Биообъект вносят в раствор раствор уже готового готового полимера полимера, который который впоследствии впоследствии переводят переводят в гелеобразное гелеобразное состояние состояние. Используют гели агар-агара, агарозы, альгината, каррагинана, фосфата кальция.

 

 

Химическая сшивка. Методы химического связывания имеют долгую историю и реализуются в различных модификациях. Практически все функциональные группы белков могут быть использованы для связывания катализатора с носителем. Широкое применение нашли реакции, ведущие в присутствии водоотнимающего агента к образованию пептидных связей между аминогруппами фермента и карбоксильными группами носителя или, наоборот, – между карбоксильными группами фермента и аминогруппами носителя. В качестве водоотнимающего агента используют дициклогексилкарбодиимид, сшивающим агентом может служить бромциан. Возможно проведение сшивки без участия сшивающих агентов. Перспективным подходом в развитии данного метода является использование в качестве носителя привитых полимеров. Прививая к поверхности полимерного материала боковые ветви, можно регулировать его свойства и влиять на реакционную способность за счет создания на поверхности носителя микросооружений, оптимальных для стабильного функционирования биокатализатора. Пример такого подхода – применение полиэтилена с привитыми поливиниловым спиртом или полиакриловой кислотой. С целью снижения диффузионных затруднений между субстратом и ферментом, а также для облегчения оттока образующихся продуктов, при иммобилизации можно выводить фермент из микросооружения молекулы носителя. Фермент присоединяют к поверхности носителя через некоторую, определенной длины, химическую последовательность, так называемый спейсер («поясок»).

 

Иммобилизация путем химической сшивки фермента с носителем характеризуется высокой эффективностью и прочностью связи. Для предотвращения снижения каталитической активности фермента место сшивки удаляют от активного центра катализатора и присоединение проводят не по белковой части молекулы, а по углеводной.

 

Считается, что идеальные материалы, используемые для иммобилизации ферментов, должны обладать следующими основ­ными свойствами: нерастворимостью в воде; высокой химической и био­логической стойкостью; значительной гидрофильностью (смачиваемостью); доста­точной проницаемостью, как для ферментов, так и для коферментов, субстратов и продуктов реакции; способностью носителя легко активироваться (переходить в реакционно-способную форму). Кроме того материал носителя должен быть нетоксичным для человека и микроорганизмов-продуцентов, а так же не влиять на физико-химические свойства реакционной среды (значение рН, концентрацию определенных ионов), которые могут повлиять на активность фермента.

Естественно, ни один из используемых в настоящее время в качестве носителя материал не отвечает полностью перечислен­ным требованиям. Тем не менее, существует широкий набор носи­телей, пригодных для иммобилизации определенных энзимов в конкретных условиях.

В зависимости от природы носители делятся на органические и неоргани-ческие материалы.

Органические полимерные носители.Иммобилизация многих ферментов осуществляется на полимерных носителях органичес­кой природы. Существующие органические полимерные носите­ли можно разделить на два класса: природные и синтетические полимерные носители. В свою очередь, каждый из классов орга­нических полимерных носителей подразделяется на группы в за­висимости от их строения. Среди природных полимеров выделя­ют белковые, полисахаридные и липидные носители, а среди синтетических- полиметиленовые, полиамидные и полиэфир­ные.

К преимуществам природных носителей следует отнести их доступность, полифункциональность и гидрофильность, а к недо­статкам - биодеградируемость и достаточно высокую стоимость.

Из полисахаридов для иммобилизации наиболее часто исполь­зуют целлюлозу, декстран, агарозу (агар) и их производные.

Среди белков практическое применение в качестве носителей нашли структурные протеины, такие, как кератин, фиброин, коллаген и продукт переработки коллагена – желатина.

 

Синтетические полимерные носители.Благодаря разнообразию и доступности материалы этой группы широко используются как носители для иммобилизации. К ним относятся полимеры на ос­нове стирола, акриловой кислоты, поливинилового спирта; по­лиамидные и полиуретановые полимеры. Большинство синтети­ческих полимерных носителей обладают механической прочнос­тью, а при образовании обеспечивают возможность варьирования в широких пределах величины пор, введения различных функци­ональных групп. Некоторые синтетические полимеры могут быть произведены в различных физических формах (трубы, волокна, гранулы). Все эти свойства полезны для разных способов иммоби­лизации ферментов.

 

Носители неорганической природы.В качестве носителей наи­более часто применяют материалы из стекла, глины, керамики, графитовой сажи, силикагеля, а также силохромы, оксиды ме­таллов. Их можно подвергать химической модификации, для чего носители покрывают пленкой оксидов алюминия, титана, гаф­ния, циркония или обрабатывают органическими полимерами. Основное преимущество неорганических носителей - легкость регенерации, механическая и химическая прочность. Подобно синтетическим полимерам неорганическим носителям можно придать любую форму и получать их с любой степенью пористост.

 

 

Техника иммобилизации.

 

Существует два основных метода иммобилизации ферментов: физический и химический.

 

Физическая иммобилизация ферментовпредставляет собой включение фермента в такую среду, в которой для него доступной является лишь ограниченная часть общего объема. При физической иммобилизации фермент не связан с носителем ковалентными связями. Существует четыре типа связывания ферментов:

- адсорбция на нерастворимых носителях;

- включение в поры геля;

- пространственное отделение фермента от остального объема реакционной системы с помощью полупроницаемой перегородки (мембраны);

- включение в двухфазную среду, где фермент растворим и может находиться только в одной из фаз.

 

· Адсорбционная иммобилизация является наиболее старым из существующих способов иммобилизации ферментов. Этот способ достаточно прост и достигается при контакте водного раствора фермента с носителем. После отмывки неадсорбировавшегося белка иммобилизованный фермент готов к использованию. Удерживание адсорбированной молекулы фермента на поверхности носителя может обеспечиваться за счет неспецифических ван-дер-ваальсовых взаимодействий, водородных связей, электростатических и гидрофобных взаимодействий между носителем и поверхностными группами белка. Вклад каждого из типов связывания зависит от химической природы носителя и функциональных групп на поверхности молекулы фермента. Преимуществом метода адсорбционной иммобилизации является доступность и дешевизна сорбентов, выступающих в роли носителей. Им также можно придать любую конфигурацию и обеспечить требуемую пористость. Важным фактор - простота применяемых методик. При адсорбционном связывании можно решить и проблему очистки фермента, так как связывание белка с носителем во многих случаях достаточно специфическое. К сожалению, прочность связывания фермента с носителем не всегда достаточно высока, что ограничивает применение метода. К недостаткам адсорбционной иммобилизации следует отнести отсутствие общих рекомендаций, позволяющих сделать правильный выбор носителя и оптимальных условий иммобилизации конкретного фермента.

 

· Перечисленных затруднений можно избежать при иммобилизации ферментов путем включения в гели. Суть этого метода иммобилизации состоит в том, что молекулы фермента включаются в трехмерную сетку из тесно переплетенных полимерных цепей, образующих гель. Среднее расстояние между соседними цепями в геле меньше размера молекулы включенного фермента, поэтому он не может покинуть полимерную матрицу и выйти в окружающий раствор, т.е. находится в иммобилизованном состоянии. Дополнительный вклад в удерживание фермента в сетке геля могут вносить также ионные и водородные связи между молекулой фермента и окружающими ее полимерными цепями. Пространство между полимерными цепями в геле заполнено водой, на долю которой обычно приходится значительная часть всего объема геля. Например, широко применяемые гели полимеров акриловой кислоты в зависимости от концентрации полимера и его природы содержат от 50 до 90% воды.

 

· Общий принцип иммобилизации ферментов с использованием мембран заключается в том, что водный раствор фермента отделяется от водного раствора субстрата полупроницаемой перегородкой. Полупроницаемая мембрана легко пропускает небольшие молекулы субстрата, но непреодолима для крупных молекул фермента. Существующие модификации этого метода различаются лишь способами получения полупроницаемой мембраны и ее природой. Водный раствор фермента можно включать внутрь микрокапсул, представляющих собой замкнутые сферические пузырьки с тонкой полимерной стенкой (микрокапсулирование). При двойном эмульгировании получается водная эмульсия из капель органического раствора полимера, содержащих, в свою очередь, еще более мелкие капли водного раствора фермента. Через некоторое время растворитель затвердевает, образуя сферические полимерные частицы с иммобилизованным в них ферментом. Если вместо водонерастворимого отвердевающего полимера используются жидкие углеводороды с высокой молекулярной массой, метод называется иммобилизацией путем включения в жидкие мембраны. К модификациям метода иммобилизации ферментов с использованием полупроницаемых оболочек относятся также включение в волокна ( при этом вместо капель, содержащих ферменты, получаются нити) и включение в липосомы. Применение систем мембранного типа позволяет получать иммобилизованные препараты с высоким содержанием фермента. Метод, как и предыдущий, достаточно универсален, т.е. применим как ферментам, так и к клеткам, а также их фрагментам. Благодаря высокому отношению поверхности к объему и малой толщине мембраны удается избежать значительных диффузионных ограничений скорости ферментативных реакций. Основной недостаток мембранных систем - невозможность ферментативного превращения высокомолекулярных субстратов.

 

· При иммобилизации ферментов с использование систем двухфазного типа ограничение свободы перемещения фермента в объеме системы достигается благодаря его способности растворяться только в одной из фаз. Субстрат и продукт ферментативного превращения распределяются между обеими фазами в соответствии с их растворимостями в этих фазах. Природа фаз подбирается таким образом, что продукт накапливается в той из них, где фермент отсутствует. После завершения реакции эту фазу отделяют и извлекают из нее продукт, а фазу, содержащую фермент, вновь используют для проведения очередного процесса. Одним из важнейших преимуществ систем двухфазного типа является то, что они позволяют осуществлять ферментативные превращения макромолекулярных субстратов, которые невозможны при применении жестких носителей с ограниченным размером пор.

 

Главным отличительным признаком химических методов иммобилизации является то, что путем химического взаимодействия на структуру фермента в его молекуле создаются новые ковалентные связи, в частности между белком и носителем. Препараты иммобилизованных ферментов, полученные с применением химических методов, обладают по крайней мере двумя важными достоинствами. Во-первых, ковалентная связь фермента с носителем обеспечивает высокую прочность образующегося конъюгата. При широком варьировании таких условий, как рН и температура, фермент не десорбируется с носителя и не загрязняет целевых продуктов катализируемой им реакции. Это особенно важно при реализации процессов медицинского и пищевого назначения, а также для обеспечения устойчивых, воспроизводимых результатов в аналитических системах. Во-вторых, химическая модификация ферментов способна приводить к существенным изменениям их свойств, таких как субстратная специфичность, каталитическая активность и стабильность.

 

 


Дата добавления: 2018-08-06; просмотров: 1148; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!