Распределение касательных напряжений и скоростей в турбулентном потоке



Касательные напряжения, возникающие в турбулентном потоке, по своей физической природе существенно отличаются от касательных напряжений в ламинарном потоке. В результате интенсивного перемешивания частиц происходит массообмен частицами в поперечном направлении между отдельными слоями, что приводит к обмену количеством движения.

Определим касательные напряжения, возникающие в турбулентном потоке вдоль оси х, в котором имеются пульсации скоростей, приняв струйчатую модель движения (рис. 4.9). Выделим в потоке жидкости два слоя: первый слой - движения со скоростью , второй - с большей скоростью на величину , т.е. .

Рис. 4.9. К определению касательных турбулентных напряжений

За счет поперечной пульсационной скорости происходит обмен массами между слоями через некоторую площадь . За времяdt через площадь от слоя 1 к слою2 пройдет следующая малая масса жидкости:

. (4.73)

Эта масса жидкости за счет продольной пульсации передаст слою 2 следующее количество движения:

. (4.74)

В результате передачи количества движения в слое 2 возникает импульс силы

, (4.75)

где - воображаемая сила трения, вектор которой параллелен направлению движения слоев.

Используя теорему количества движения (изменение количества движения равно импульсу движущих сил), получим

(4.76)

или

(4.77)

где - касательные напряжения в турбулентном потоке.

Уравнение выражает мгновенное значение касательных напряжений, обусловленных пульсацией скорости при турбулентном движении.

Осредненные касательные напряжения турбулентного трения представляются в виде

, (4.78)

где , - осредненные пульсационные составляющие.

В турбулентном потоке имеют место вязкостные напряжения, связанные с силами внутреннего трения в результате сцепления частиц в потоке, а также со стенками русла. Полные касательные напряжения в результате турбулентного перемешивания и вязкостного трения

(4.79)

или

, (4.80)

где - динамическая вязкость.

Согласно теории Прандтля пульсационные скорости и достаточно близки ( ), а пульсационная осредненная составляющая

,

где l - значение перемещения частиц или длина пути смешивания.

Тогда, подставив (4.81) в (4.78), получим формулу турбулентных касательных напряжений:

. (4.82)

Согласно гипотезе Прандтля величина принимается пропорциональной расстоянию в рассматриваемой точкеz от стенки русла потока, т.е.

, (4.83)

где a - некоторое постоянное число.

По Прандтлю следует, что по мере удаления от стенки значение перемещений частиц жидкости в поперечном направлении увеличивается. Числоа обычно называют универсальной постоянной Прандтля.

В результате исследований турбулентного потока в трубах, связанных с распределением скоростей, Никурадзе получил a=0,4.

По предложению Буссинеска турбулентные касательные напряжения по аналогии с законом Ньютона можно представить в виде

, (4.84)

где А - коэффициент турбулентного перемешивания, связанный с переносом количества движения в результате интенсивности турбулентного перемешивания.

Учитывая равенства для (4.82) и (4.84),

, (4.85)

получим

. (4.86)

По аналогии с законом трения Ньютона обозначим , где - динамическая виртуальная (турбулентная) вязкость.

Выражение (4.82) может быть представлено в следующем виде:

.

При сильно турбулизированном потоке вязкостные напряжения пренебрежительно малы, и тогда касательные напряжения

.

40. Опыты Никурадзе и Мурина.

Наиболее полные исследования по определению зависимости коэффициента l от числа Рейнольдса и от относительной шероховатости были выполнены И. Никурадзе.

И. Никурадзе испытал ряд труб с искусственно созданной шероховатостью на их внутренней поверхности. Шероховатость была получена путем приклейки песчинок определенного размера, полученных просеиванием через сита. Такая шероховатость называется равномерно зернистой. Испытания были проведены при широком диапазоне относительных шероховатостей , а также чисел Рейнольдса .

Данные опытов И. Никурадзе изобразил на графике, где по оси абсцисс откладывались логарифмы величин Re, а по оси ординат – логарифмы 100 l при различных значениях относитель­ных шероховатостей (рис. 6.6).

 

Рис. 6.6. График Никурадзе

 

При Re < 2300 (lgRe < 3,36) – прямая 1 – имеет место ламинарный режим и l зависит только от числа Рейнольдса и не зависит от шероховатости стенок.

При – участок 2 – наблюдается быстрый переход от ламинарного режима к турбулентному. Далее начинается прямая 3, характеризующая зависимость l от числа Рейнольдса для гидравлически «гладких» труб, у которых величина выступов шероховатостей меньше толщины ламинарной пристенной пленки. Далее кривые зависимости l от Re расходятся. Участки кривых 4 характеризуют собой переход от гидравлически «гладких» труб к гидравлически «шероховатым» трубам 5, т. е. в зоне 4–5 коэффициент гидравлического трения l зависит как от шероховатости, так и от Re.

Последняя область 5 представлена линиями, параллельными оси абсцисс, что свидетельствует о том, что здесь коэффициент гидравлического трения зависит только от шероховатости. Эту область обычно называют областью квадратичного сопротивления, так как потери напора по длине пропорциональны квадрату скорости.

Для труб с естественной шероховатостью закон изменения l от Re получается несколько иным, без подъема кривых после отклонения их от линии гладких труб. Различие объясняется тем, что в трубах с естественной шероховатостью выступы шероховатости имеют различную высоту и при увеличении числа Рейнольдса начинают выступать за пределы ламинарного слоя не одновременно, а при разных Re. Поэтому переход от линии «гладких» труб к горизонтальным прямым, соответствующим квадратичному закону, происходит более плавно, без провала кривых, что наглядно представлено на графике Г. А. Мурина (рис. 6.7).

 

 

Рис. 6.7. График Мурина


Дата добавления: 2018-08-06; просмотров: 633; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!