Рентгеноструктурный фазовый анализ



Методы фазового анализа материалов и место в них мессбауэровской спектроскопии.

Фазовый качественный и/или количественный анализ – идентификация различных кристаллических фаз и определение их относительных концентраций в смесях на основе анализа дифракционной картины, регистрируемой от исследуемых порошковых образцов. Прецизионное определение параметров элементарной ячейки известного вещества с целью обнаружения изоморфных примесей; индицирование рентгенограмм, определение параметров и возможной пространственной группы для новых соединений.

Качественный фазовый анализ проводят сравнением экспериментальных значений межплоскостных расстояний и относительных интенсивностей с эталонными рентгенограммами, так как каждое вещество имеет свою «картину» расположения линий на рентгенограмме. Качественный фазовый анализ позволяет разделять и идентифицировать отдельные фазы гетерогенной системы. Объектами исследования в фазовом анализе являются металлы, сплавы, химические соединения, минералы, руды. С помощью рентгенофазового анализа можно определить состав неметаллических включений в металлах (оксидов, сульфидов, нитридов, карбидов), распределение легирующих элементов в многофазных сплавах. Широкое применение рентгенофазового анализа объясняется хорошо разработанной теорией, простотой приготовления образцов, относительной экспрессностью получения качественных результатов, сохранением образцов без изменения после исследования, возможностью использования поликристаллического материала, возможностью массовых измерений, возможностью различения полиморфных модификаций, возможностью получения из экспериментальной дифрактограммы, наряду с данными о фазовом составе, данных о структурных характеристиках отдельных фаз и их количестве.

Количественный фазовый анализ является вторым этапом, когда качественный фазовый состав известен. Количественный рентгеновский фазовый анализ основан на зависимости интенсивности дифракционных отражений от содержания фазы в исследуемом многофазном поликристаллическом образце. Однако, даже при одинаковом содержании определяемой фазы интенсивность дифракционного отражения будет меняться в зависимости от величины среднего коэффициента поглощения рентгеновских лучей в образце. Поэтому необходимо либо найти эту зависимость и определить коэффициент поглощения образца, либо использовать методы, позволяющие устранить влияние фактора поглощения. Известно несколько методов количественного фазового анализа:

- метод подмешивания основан на сравнении интенсивностей линий на дифрактограмме, принадлежащих определяемой фазе, с интенсивностями линий для эталонного вещества, количество которого в смеси заранее задано;

- метод независимого эталона, при котором последовательно проводят съемку образца и эталона;

- метод гомологических пар – получение серии рентгенограмм смесей или сплавов и нахождение на них линий различных фаз одинаковой интенсивности;

- метод наложения состоит в сравнении рентгенограмм исследуемого образца и рентгенограмм отдельных составляющих в чистом виде;

- метод съемки без эталона основан на том, что интенсивность линий на рентгенограммах фаз пропорциональна объемному содержанию фазы, и измеряя абсолютную интенсивность линий каждой фазы на рентгенограмме или отношение интенсивностей линий различных фаз, можно определить концентрацию каждой фазы.

Полнопрофильный анализ рентгенограммы порошкового образца, включающий прецизионное определение параметров ячейки, количественный анализ многофазных смесей, уточнение кристаллической структуры (координат, заселенностей позиций атомов), определение размера частиц и микронапряжений, учет текстуры и т.д.

Мессбауэровская спектроскопия (МС) является ядерно-физическим методом, находящим широкое применение при анализе фазового состава. С помощью МС можно решать такие актуальные задачи материаловедения, как изучение кристаллической структуры, магнитную и структурную анизотропию, параметры сверхтонких магнитных и электрических взаимодействий, электронную плотность и т.д. В практике мессбауэровских исследований, как и в случае большинства других спектральных методов, результаты фазового анализа дают информацию об изучаемом объекте, как правило, на качественном, уровне. Попытки получения количественной информации до сих пор ограничиваются либо относительным количественным, либо полуколичественным анализом. Решение задачи выполнения полноценного количественного анализа для геометрии на поглощение позволит существенно повысить информативность МС и расширить области её применения.

 

Дополнительно:

Методы исследования фазового состава веществ и материалов предназначены для установления качественного и количественного содержания фаз, имеющих одинаковый и различный химический состав.

Металлографический анализ

Раздел материаловедения, изучающий изменения макро- и микроструктуры металлов и сплавов в связи с изменением их химического состава и условий обработки называется металлографией.

Изучение металлографических шлифов позволяет определить структуру металла, наблюдать в поле зрения микроскопа различные фазы, которые могут окрашиваться в различные цвета. Это позволяет выяснить такие важные обстоятельства, как особенности технологии обработки изделия (ковка, термическая обработка и т.д.), температуру разогрева образца и момент происшествия, например, при пожаре и т.д. Так, например, металлографическим анализом можно установить, в какой атмосфере, бедной или богатой кислородом, произошло расплавление проводов в момент короткого замыкания. В свою очередь, установление этого обстоятельства имеет значение для решения вопроса о том, явилось ли короткое замыкание причиной пожара или возникло в его результате.

Металлографический анализ позволяет оценить количественное содержание включений в шлифе и весьма нагляден. Однако данный метод исследования является разрушающим и по точности уступает рентгенофазовому анализу.

Рентгеноструктурный фазовый анализ

Рентгенофазовый анализ — метод определения фазового состава твердых кристаллических и некоторых аморфных веществ. Каждое кристаллическое вещество имеет строго индивидуальную геометрию кристаллической решетки, которая характеризуется набором межплоскостных расстояний. При прохождении рентгеновских лучей через кристалл возникает дифракционный эффект. Дифракционная картина осуществляется либо в фотографическим способом в специальных камерах на рентгеновскую пленку, либо с использованием рентгеновских дифрактометров с помощью электронных регистрирующих систем.

Для решения вопроса о фазе, присутствующей в пробе, нет необходимости определять ее кристаллическую структуру. Достаточно рассчитать дифрактограмму (рентгенограмму) и сравнить полученный ряд межплоскостных расстояний и относительных интенсивностей линий с приведенными в картотеках рентгенометрических данных, наиболее полная из которых — постоянно обновляемый американский определитель фаз — картотека Joint Committee on Powder Diffraction Standards (JCPDS).

Наличие на рентгенограмме (дифрактограмме) тех или иных линий характеризует качественный фазовый состав пробы. Смесь нескольких индивидуальных химических соединений дает рентгенограмму, представляющую собой наложение дифракционных эффектов, характеризующих отдельные фазы. При сравнении межплоскостных расстояний образцов и эталонов зачастую приходится анализировать очень большие информационные массивы, поэтому обработка данных производится на ПЭВМ с использованием автоматизированных систем и баз данных.

Калориметрический анализ

Калориметрия — группа методов измерения тепловых эффектов (количества теплоты), сопровождающих различные физические, химические и биологические процессы. Калориметрия включает в себя измерение теплоемкости, теплоты фазовых переходов, тепловых эффектов намагничивания, электризации, растворения, химических реакций (например, горения). Приборы, применяемые в калориметрии, называются калориметрами.

Методы термографии используются, например, при исследовании полимеров. Они позволяют определять типы полимеров, состав их смесей и сополимеров, марки некоторых полимеров, наличие и состав специальных добавок, пигментов и наполнителей, признаки, обусловленные технологией синтеза и переработки полимеров в изделия, а также условия эксплуатации последних. Однако более эффективным является совмещение термографического и газохроматографического методов анализа.


Дата добавления: 2018-08-06; просмотров: 2844; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!