Трение в поступательных кинематических парах.



Сила трения пропорциональна нормальному давлению и направлена противоположно направлению относительной скорости.             F = f N

На рис. 3.13 представлена схема поступательной пары. Пусть к ползуну приложена сила Q, направленная перпендикулярно направляющей, и движущая сила P. Со стороны направляющей на ползун действуют нормальная реакция N и сила трения F, являющаяся касательной реакцией. Геометрическая сумма N и F есть полная реакция R. Угол между R и N назовем углом трения, поскольку он зависит от силы трения F. При равномерном движении ползуна соблюдается условие P = F, где F = fN, откуда следует f = F/N. Из построения на рис. 3.13в следует, что F/N = tgφ где φ = arctg f. При малом коэффициенте трения φ ≈ f. Так, например, при f = 0.2 φ = 0.2 рад ≈ 12˚. Коэффициент трения определяется экспериментально на установке, схема которой показана на рис. 3.13б. На плоскости, наклоненной к горизонту под углом α. Помещено тело. Установим условия, при которых тело будет покоиться на плоскости. Разложим силу тяжести на две составляющие – по нормали и по касательной к поверхности. Нормальная составляющая, равная G cos α, прижимает тело к плоскости, касательная составляющая, равная G sin α, стремится сдвинуть тело вниз по плоскости. Этой силе противодействует сила трения F = fGsinα. Условие равновесия тела на плоскости

F≥Gsinα или FG cos α ≥ G sin α f ≥ tg α tgφ ≥tg α φ ≥ α

Равновесие тела на наклонной плоскости не зависит от величины силы. Такое состояние носит название самоторможения. Самоторможение часто используется в грузоподъемных механизмах.

 

26а

 

 

26б

 

 

Трение во вращательных парах.

 

Вращательная кинематическая пара образуется цапфой (опорной частью вала) и охватывающим её подшипником. Для того чтобы цапфа, находящаяся под действием нескольких приложенных к ней сил, могла вращаться, необходимо, чтобы равнодействующая Р этих сил (рис. 1) создавала момент не меньший момента силы трения.

Разложив силу Р на нормальную Рn и тангенциальную Рτ составляющие и обозначив через: r плечо действия силы Р относительно оси вращения цапфы; R – радиус цапфы; λ - угол между линией действия силы Р и радиусом, проведённым в точку приложения силы P, получим:

момент, вращающий цапфу, равен

Для возможности движения необходимо соблюдение условия

, откуда

 , и поэтому

Следовательно, момент силы Р не может вращать цапфы, если линия действия силы Р проходит внутри круга с радиусом . Такой круг получил название – круга трения.

 

 

Трение в винтовой кинематической паре.

На рис. 3.14 показан один виток прямоугольной резьбы. Согласно 3-му закону трения гайку можно заменить небольшим элементом, нагруженным теми же силами, что и гайка. В таком случае возникает аналогия с ползуном, перемещающимся по наклонной плоскости, где α – угол подъема винтовой нарезки.

Построим треугольник сил, приложенных к ползуну. Из треугольника следует P = Q tg (α + φ).

Момент, который необходимо приложить к гайке, чтобы преодолеть силу Q, равен M = P rср = Q rср tg (α+ φ)

где r ср - средний радиус резьбы.

Угол подъема α обычно принимается небольшим для обеспечения самоторможения гайки, угол трения φ = arctg f0, где f0 - приведенный коэффициент трения. Для прямоугольной резьбы f0 = f, для треугольной резьбы f0 = f/cos 30˚.

 

 


Дата добавления: 2018-08-06; просмотров: 961; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!