Автоматизированные линии на базе КГШП



КГШП являются одним из наиболее приспособленных к работе в автоматизированных линиях видом тяжелого КПО. Их преимущество заключается в жестком ходе пресса, что позволяет гарантировать формоизменение заготовки в каждом ручье за один ход, а также жестко блокировать работу пресса со средствами автоматизации. Наличие большого штампового пространства позволяет помещать многоручьевые штампы и облегчает размещение средств автоматизации. Наличие выталкивателей облегчает работу средств автоматизации.

Автоматизация штамповки наиболее эффективна при многопереходной штамповке.

Работа в автоматическом режиме предполагает высокую надежность всех составляющих линий. У КГШП при подаче немерной заготовки, недогретой заготовки, одновременной штамповке в нескольких ручьях (если пресс на это не рассчитан), т.е. при повышении номинального усилия пресса может возникнуть явление «заклинивания» или «распора», что приводит к продолжительной остановке линии. Преодоление это­го препятствия возможно путем повышения надежности средств автоматизации, применения надежных средств контроля, индукционного нагрева с автоматическим контролем температуры, поданной в штамп заготовки.

 

ШТАМПОВЫЕ СТАЛИ

ПЛАН ЛЕКЦИИ:

1. Основные виды износа штампов горячей штамповки.

2. Требования, предъявляемые к штамповым сталям.

3. Выбор штампового материала.

 

Основные виды износа штампов горячей штамповки

Современное развитие кузнечно-штамповочного производства предъявляет серьезные требования к штамповой оснастке. Придание штампам повышенной стойкости и работоспособности является важной задачей особенно при жестких термомеханических режимах штамповки, повышении требований к точности поковок и распространении горячей штамповки на область обработки труднодеформируемых материалов.

При горячей штамповке происходит интенсивное разрушение штампов. Выделяются следующие разновидности разрушения гравюры штампов: необратимая деформация формообразующих элементов, износ, образование трещин.

Равномерный абразивный износ (износ истиранием) протекает одновременно по всему периметру гравюры или на отдельных участках, где имеют место значительные перемещения металла. Он усиливается с повышением скорости деформации. Абразивный износ вызывается механическим зацеплением микронеровностей при полусухом трении, контактным схватыванием в микрообъемах, а также твердыми мелкодисперсными абразивными частицами, попадающими в пограничный слой. Интенсивность износа повышается в связи с понижением механической прочности контактной зоны, окалинообразованием.

Местный износ выявляется в виде локальных очагов разрушения, связанных с попаданием в контактную зону твердых частиц и носит характер царапания. Местный износ может проявляться при неудачной конструкции штампа, когда имеет место преимущественное течение металла на ограниченном участке гравюры.

Абразивный износ приводит к потере геометрических размеров гравюры штампа в сторону их увеличения.

Пластическая деформация контактной зоны проявляется как пластическое течение, которое затрагивает микрообъемы и является результатом неравномерности напряженно-деформированного состояния в отдельных микрообъемах, дефектов кристаллической решетки.

Часть микрообъемов пластически деформируется из-за разупрочнения и неблагоприятной кристаллографической ориентировки по отношению к направлению действия максимальных напряжений. Смещение тонких поверхностных слоев в направлении течения металла имеет место в связи с потерей прочности при кратковременном разогреве гравюры. При этом образуются наплывы, облегчающие образование трещин, рисок, борозд. В этом случае происходит уменьшение геометрических размеров ручья.

Повышение сопротивления пластическому смещению поверхностных слоев может быть достигнуто снижением температуры гравюры за счет применения смазки с хорошими охлаждающими и теплоизоляционными свойствами, охлаждением штампа.

Пластическая деформация может проявляться в виде смятия и осадки отдельных выступающих или наклонных элементов, что связано с несимметричным течением металла относительно выступа или с наличием высоких удельных усилий.

Трещины на контактной поверхности выявляются в виде микро- и макро разрывов, причинами которых могут быть:

1. металлургические дефекты (наследственная крупнозернистость, включения).

2. Технологические дефекты (трещины термического происхождения, высокий уровень остаточных напряжений).

3. Конструктивные дефекты (неправильный расчет штампа на прочность, наличие сложных переходов и концентраторов напряжений).

Кинетика развития трещин в зависимости от условий процесса может привести к мгновенному или постепенному разрушению. По характеру разрушения различают местное выкрашивание и поломку, когда штамп раскалывается.

Решающее влияние на образование трещин оказывает уровень растягивающих напряжений в штампе. Разгарная сетка трещин является результатом термомеханической усталости. Температурный режим работы штампа является одним из основных условий, определяющих стойкость штампового материала. Влияние температуры связано с действием следующих факторов:

1. изменение показателей механических свойств материале в нагретом состоянии.

2. Явление отпуска и структурные превращения в прогреваемом слое.

3. Наличие напряжений, вызванных неравномерным распределением температур.

Большое влияние на температуру поверхности оказывает темп работы. Так, уменьшение интервала между ударами пресса с 40 с до 20 с приводит к повышению температуры гравюры примерно на 40°. Еще значительнее влияние времени контакта с заготовкой. Даже при кратковре­менном заклинивании заготовки в течение 5 с температура поверхности возрастает до 630...550 °С, а при заклинивании пресса до 700...750°.

Напряжения, соответствующие величине температурного перепада при охлаждении штампа, зависят от толщины охлаждаемого слоя металла и интенсивности охлаждения штампа, чем толще охлаждаемый слой металла и чем за больший промежуток времени происходит охлаждение штампа, тем меньше напряжения и выше разгаростойкость штампа.

Разгар - это сетка мелких поверхностных трещин, которые образуются в результате температурно-силовых условий поверхностного слоя. Циклические термические напряжения оказывают существенное влияние на микрогеометрию поверхности и свойства поверхностного слоя. После появления разгарных трещин влияние термической усталости на износ инструмента проявляется наиболее заметно.

Разгарные трещины располагаются в виде сетки на участках штамповочных ручьев или в виде поперечных трещин на их кромках, облойном мостике, очке матрицы. Вид сетки трещин различен и зависит от типа оборудования, условий эксплуатации штампа, характера течения металла, условий смазки и охлаждения штампа.

В нормальных условиях работы штампы должны иметь 1температуру 250...400°С, которая отвечает достаточной прочности штамповой стали и способствует уменьшению перепада температур. Искусственное охлаждение происходит в промежутке между двумя операциями штамповки. Тепло отводится от поверхности ручья в основном и частично от зеркала штампа.

Естественное остывание штампа происходит в течение всего периода штамповки за счет отвода тепла остальной частью поверхности. Чтобы обеспечить среднюю температуру штампа 250...400° приходится допускать разогрев поверхности до 500...600°, а охлаждение до 100...150°. Это создает перепад температур в поверхностном слое.

Для уменьшения разгара целесообразно внутреннее охлаждение штампов. Тогда отвод тепла происходит в направлении подвода тепла непрерывно в течение всего процесса штамповки. При этом наблюдается повышение стойкости штампа (примерно в 2 раза).

Задача повышения стойкости штампового инструмента должна решаться в определенной последовательности:

1. Определение преобладающего вида износа.

2. Выделение наиболее износочувствительных участков гравюры, из-за потери размеров которых штамп выходит из строя.

3. Определение основных причин повышенного износа (материал штампа, температурные условия работы, конструкция и т. д.).

4. Назначение мер повышения стойкости.

 


Дата добавления: 2018-06-01; просмотров: 292; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!