Строение лимфатических узлов.
В лимфатическом узле имеются следующие структурные компоненты: капсула, содержащая много коллагеновых волокон (в области ворот в капсуле есть и гладкие миоциты), трабекулы — перекладины из соединительной ткани, которые, анастомозируя друг с другом, образуют каркас узла, ретикулярная ткань, заполняющая все пространство, ограниченное капсулой и трабекулами.
В лимфатическом узле различают периферическое корковое вещество и центральное мозговое вещество. Между этими частями выделяют еще паракортикальную зону.
В корковом веществе расположены скопления лимфоидной ткани в виде вторичных узелков. Это округлые образования диаметром до 1 мм. Центральную часть узелка называют центром размножения, или реактивным центром. Здесь происходит антигензависимая пролиферация В-лимфоцитов и дифференцировка их в предшественники плазматических клеток. Кроме того, в центре размножения находятся дендритные клетки костномозгового происхождения, которые на своих отростках удерживают антигены, активирующие В-лимфоциты, макрофаги моноцитарного генеза, фагоцитирующие погибающие апоптозом аутоиммунные В-лимфоциты, антигены и инородные частицы.
По периферии вторичного узелка расположена корона полулунной формы, состоящая из малых лимфоцитов (рециркулирующих В-лимфоцитов, В-клеток памяти, незрелых плазматических клеток). На границе центра размножения короны обнаруживаются Т-лимфоциты (хелперы), которые способствуют развитию В-лимфоцитов в иммунобласты. Последние мигрируют в мозговые тяжи, отходящие от паракортикальной зоны и узелков внутрь мозгового вещества.
|
|
Паракортикалъная зона лимфатического узла находится на границе между корковым и мозговым веществом. Она называется тимусзависимой зоной, или Т-зоной, так как при удалении тимуса происходит ее исчезновение. В паракортикальной зоне осуществляются бласттрансформация Т-лимфоцитов, их пролиферация и превращение в специализированные клетки системы иммунитета. Здесь много дендритных клеток. Они появляются в результате миграции из тканей системы покрова организма внутриэпидермальных макрофагов. На своей поверхности они несут антигены и представляют их Т-лимфоцитам (хелперам). Кроме того, в этой зоне находятся особые венулы, выстланные эндотелиоцитами кубической формы. Через стенку этих венул происходит переход Т- и В-лимфоцитов из крови в строму лимфатического узла.
Мозговое вещество лимфатических узлов является местом созревания плазматических клеток. Вместе со вторичными узелками коркового вещества мозговые тяжи составляют тимуснезависимую зону, или В-зону, лимфатических узлов. Мозговые тяжи кроме В-лимфоцитов и плазмоцитов содержат Т-лимфоциты и макрофаги.
|
|
Периферические органы кроветворения и иммунной защиты – селезенка: развитие, структурные компоненты, микроскопическое и ультрамикроскопическое строение, функциональное значение белой и красной пульпы. Особенности сосудистой системы, значение открытого и закрытого внутриорганного кровообращения.
Селезенка – крупный орган периферической системы кроветворения, образуется из мезенхимы на 2 мес.
внутриутробного развития. Строма – ретикулярная ткань.
В эмбриогенезе – универсальный орган кроветворения. К концу эмбриогенеза формируется мощная соединительнотканная капсула, от которой внутрь отходят трабекулы, которые в глубоких частях органа анастомозируют между собой. Вследствие меняется микроокружение, и кроветворение затухает, переходя в красный костный мозг.
Снаружи капсулы располагается висцеральный листок брюшины. В капсуле и в трабекулах располагаются в
большом количестве гладкомышечные клетки, сокращение которых приводит к выбросу депонированной крови. При дополнительной физической нагрузке депонированная кровь выходит из селезенки, селезенка сокращается, при этом ощущается покалывание, боль. В трабекулах селезенки разветвляются трабекулярные сосуды – артерии и вены здесь безмышечного типа и удаление крови без сокращения капсулы невозможно.
|
|
В строму входят: ретикулярные клетки, селезеночные макрофаги. Строма органа представлена ретикулярными клетками и ретикулярными волокнами, содержащими коллаген III и IV типов.
Все вещество селезенки подразделяется на:
1) белая пульпа (лимфатические узелки разбросаны по всей селезенке равномерно).
В ней выделяют: центральную артерию (расположена сбоку), вокруг которой выделяют периартериальную зону (тимус-зависимую). Здесь микроокружение – Т-лимфоциты, строма – ретикулярные клетки и интердигитирующие макрофаги. Центральную часть занимают молодые клетки – В-лимфоциты. В В-зоне микроокружение представлено ретикулярными клетками и дендритными макрофагами. Под действием накопленного антигена формируются реактивные центры (светлые), т.е. вокруг светлого центра расположена мантийная зона В-лимфоцитов (и, может быть, Т-лимфоцитов на пути миграции). Снаружи в лимфатическом узелке располагается краевая (маргинальная) зона (В- и Т-лимфоциты на путях миграции).
|
|
2) красная пульпа (все остальное).
Красная пульпа представлена резидентными макрофагами, хорошо развита синусоидная сосудистая сеть. В ней кровь находится и в сосудах, и вне них.
Это связано с тем, что в селезенке выделяется два типа кровоснабжения – открытое и закрытое.
Селезеночная артерия, заходя в ворота селезенки, разветвляется (по ходу трабекул –трабекулярные артерии, а по ходу пульпы – пульпарные).
Участок артерии, вокруг которого располагается лимфатический узелок, называется центральной артерией.
Центральная артерия, выходя из белой пульпы, разветвляется на кисточковые артериолы, часть которых образует венозный отток – закрытая система (артерия – капилляр – вена).
Часть кисточковых артериол открыто переходит в красную пульпу и выбрасывают в нее кровь. Чаще всего – это отжившие свой срок эритроциты. Там они разрушаются макрофагами, билирубин поступает в печень, а железо – в красный костный мозг, где захватывается макрофагами, участвующими в образовании гемоглобина. Остальные клетки крови из красной пульпы и клетки, образующиеся в селезенке, проходят через стенку капилляров и попадают в сосудистое русло – это открытая система (артерия – красная пульпа – капилляр).
Таким образом, селезенка выполняет барьерную функцию для крови за счет ретикулярной стромы и макрофагов, поэтому для лечения сепсиса используют селезенку свиньи (в течение 8 ч – барьер). 3 подключения в течение 24 ч – помогают самому тяжелому больному.
Селезенка является кроветворным органом.
Она выполняет функции:
1) барьерную;
2) иммуно-биологическую;
3) вырабатывает различные поэтины:
- тромбоцитопоэтины блокирующего ряда,
- эриропоэтины;
Селезенка хорошо регенерирует – быстро формируется масса селезенки, но необходимо сохранить сосудистую систему в области ворот. При разрыве селезенки еѐ удаляют из-за больших кровопотерь.
Периферические органы кроветворения и иммунной защиты – лимфоидные образования в составе слизистых оболочек. Кишечно-ассоциированная лимфоидная ткань и бронхоассоциированная лимфоидная ткань: строение, функциональные зоны, участие в развитии иммунных реакций.
Примером лимфоидной ткани слизистой могут служить пейеровы бляшки, встречающиеся обычно в нижней части подвздошной кишки. Каждая бляшка примыкает к участку эпителия кишки, называемому эпителием, ассоциированным с фолликулами. Этот участок содержит так называемые М-клетки. Через М-клетки в субэпителиальный слой из просвета кишечника поступают бактерии и другие чужеродные антигены.
Основная масса лимфоцитов пейеровой бляшки приходится на В-клеточный фолликул с зародышевым центром посередине. Т-клеточные зоны окружают фолликул ближе к слою эпителиальных клеток.
Основная функциональная нагрузка пейеровых бляшек — активация В-лимфоцитов и их дифференцировка в плазмоциты, продуцирующие антитела классов IgA и IgE.
В центральных органах иммуногенеза лимфоидная ткань находится в функциональном единстве с другими тканями, например в костном мозге — с миелоидной тканью, в вилочковой железе — с эпителиальной тканью. В периферических органах иммунной системы, например в стенках желудочно-кишечного тракта, дыхательных и мочевыводящих путей, в зависимости от степени зрелости и функционального состояния Л.т. находится в различных качественных состояниях — от единичных лимфоцитов и диффузно расположенной лимфоидной ткани до лимфоидных узелков с центрами размножения, наличие которых свидетельствует о высокой иммунной активности организма.
Наибольшее количество лимфоидных узелков, в том числе и с центрами размножения, обнаруживается в миндалинах, лимфоидных бляшках, селезенке, стенках червеобразного отростка, желудка, тонкой и толстой кишок, в лимфатических узлах у детей и подростков. Помимо скоплений, лимфоидной ткани в виде редкого, тонкого, как бы защитного слоя клеток лимфоидного ряда располагается под эпителиальным покровом дыхательных и мочевыводящих путей, желудочно-кишечного тракта.
Лимфоидная ткань, ассоциированная с кишечником представлена в виде узелковых скоплений, лишенных замкнутого соединительнотканного футляра, в тонком кишечнике получила название пейеровых бляшек.
Лимфоидные (пейеровы) бляшки располагаются в стенках тонкой кишки, главным образом подвздошной, вблизи места впадения ее в слепую, возле границы двух различных отделов пищеварительной трубки: тонкой и толстой кишки. По другую сторону илеоцекального клапана многочисленные плотно лежащие друг возле друга лимфоидные узелки находятся в стенках червеобразного отростка. Одиночные лимфоидные узелки как бы рассеяны в толще слизистой оболочки органов пищеварения, дыхательных и мочевыводящих путей для осуществления иммунного надзора на границе организма и внешней среды, представленной воздухом, содержимым пищеварительного тракта, выводимой из организма мочой.
Попадая в кишечник, антигены проникают в пейеровы бляшки через специализированные эпителиальные клетки и стимулируют антигенреактивные лимфоциты.
После активации антигены с лимфой проходят через мезентериальные лимфатические узлы, попадают в грудной проток, затем в кровь и в собственную пластинку, где превращаются в клетки, продуцирующие иммуноглобулин А, и в результате такой широкой распространенности защищают обширный участок кишечника, синтезируя протективные антитела.
Таким образом, пейеровы бляшки являются эффективным инструментом защиты от проникновения патогена через пищеварительный тракт.
Миндалины –это лимфоидная ткань, ассоциированная со слизистыми покровами и расположенная вдоль дыхательного тракта. Миндалины по строению и функциям близки пейеровым бляшкам и, как и они, не относятся к категории лимфоидных органов, поскольку не полностью инкапсулированы. Лимфатические фолликулы разделены на В- и Т-зависимые зоны.
Миндалины залегают в стенках начального отдела пищеварительной трубки и дыхательных путей, образуя так называемое глоточное лимфоидное кольцо (кольцо Пирогова-Вальдейера). Лимфоидная ткань миндалин имеется на границе полости рта, полости носа, с одной стороны, и полости глотки и гортани – с другой.
Паренхима миндалин образована диффузной лимфоидной тканью, состоящей из ретикулярных клеток и волокон, в петлях которых располагаются малые, средние и большие лимфоциты, макрофаги, плазматические клетки и др, В толще миндалин находятся плотные округлой формы скопления лимфоидной ткани – лимфоидные узелки. Они могут быть двух типов, с центром размножения и без него. В лимфоидных узелках без центра размножения лимфоидная ткань созревает, приходит в состояние функциональной зрелости и активности для встречи с чужеродными агентами. В некоторых лимфоидных узелках по мере их развития, появляются центры размножения. В них много митотически делящихся клеток лимфоидного ряда, молодых лимфоцитов, а также незрелых плазматических клеток, макрофагов. Узелки имеют периферическую (краевую) зону – мантию, которая состоит из плотно расположенных клеток, преимущественно малых и средних лимфоцитов, которые лежат в несколько слоев в виде ободка вокруг центра размножения. Диффузная лимфоидная ткань располагается между узелками в виде тяжей.
Эндокринная система: понятие о гормонах, клетках-мишенях и разновидностях регуляторных взаимодействий, классификация структурных компонентов. Секреторный цикл эндокриноцитов: особенности цикла и ультраструктуры клеток, синтезирующих белково-пептидные, стероидные и нейрогормоны (на примерах конкретных эндокринных структур человека).
Эндокринные органы выделяют гормоны, которые поступают в кровь, связываются с клетками-мишенями и изменяют их режим функционирования. Кроме эндокринных желез в состав эндокринной системы включают эндокринные части неэндокринных органов (например, островки Лангерганса) и одиночные гормонпроду-цирующие клетки, располагающиеся диффузно в различных органах.
Гормоны по химическому строению подразделяются на следующие группы:
а) гормоны белковой природы - (окситоцин.рилизинг-гормоны, инсулин);
б) стероидные - производные холестерина (половые, глюкокортикоидные гормоны);
в) производные тирозина - тироидные гормоны, адреналин, норадреналин.
В гормональной системе различают разные способы влияния гормонов:
а) эндокринный (дистантный) - гормон поступает в кровь и с током крови транспортируется к клетке-мишени;
б) паракринный - продуцент гормона и клетка-мишень расположены рядом, транспорт гормона происходит путем диффузии;
в) аутокринный - сама клетка продуцирует гормон, и имеет рецепторы к нему.
Гормоны - это вещества с высокой биологической активностью - регулируют рост и деятельность клеток различных тканей организма.Для гормонов характерна специфичность действия на конкретные клетки и органы, называемые мишенями. Это обусловлено наличием на клетках-мишенях специфических рецепторов, распознающих и связывающих данный гормон. Будучи связан рецептором, гормон может воздействовать на плазматическую мембрану, на фермент, находящийся в этой мембране, на клеточные органеллы в цитоплазме или же на ядерный (генетический) материал.
Клетки-мишени - это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.
Каждая клетка-мишень обладает наличием специфического рецептора к действию гормона, и часть рецепторов находится в мембране. Такой рецептор обладает стереоспецифичностью. У других клеток рецепторы расположены в цитоплазме – это цитозольные рецепторы, которые реагируют вместе с гормоном, проникающим внутрь клетки. Следовательно, рецепторы делятся на мембранные и цитозольные. Для того, чтобы клетка отреагировала на действие гормона необходимо образование вторичных посредников к действию гормонов. Это характерно для гормонов с мембранным типом рецепции.
Фолликулярные эндокриноциты имеют кубическую форму и округлое ядро. На апикальной поверхности их имеются микроворсинки. В цитоплазме хорошо развиты органеллы, обеспечивающие синтез белков. Много свободных рибосом, образующих полисомы. Соседние эндокриноциты в стенке фолликула соединяются при помощи плотных контактов, десмосом и интердигитаций.
Секреторный цикл этих клеток состоит из следующих фаз: поглощение исходных веществ, синтез секрета, выделение его в полость фолликула в виде коллоида, иодирование коллоида, эндоци-тоз иодированного коллоида и его модификация и выведение гормона через базальную часть клетки в окружающие ткани и кровеносные и лимфатические капилляры. Выработка тиреоидных гормонов начинается с синтеза тиреоглобулина в базальной части эндокриноцитов.
Содержащие тиреоглобулин продукты синтеза из эндоплазматической сети поступают в комплекс Гольджи и далее в виде секреторных гранул путем экзоцитоза выводятся в полость фолликула. К нейодированному тиреоглобулину присоединяется сначала один атом йода, а затем и второй, в результате чего образуются моно- и дийодтиронины. Последующая комплексация дает тетрайодтиронин, или тироксин. При отщеплении одного атома йода от тироксина образуется трийодтиронин.
Центральные регуляторные образования эндокринной системы – гипоталамус, эпифиз: тканевые компоненты, источники эмбрионального развития, микроскопическое и ультрамикроскопическое строение, функции. Связь нейросекреторных ядер гипоталамуса с адено- и нейрогипофизом. Регуляция функций гипоталамуса ЦНС.
Гипоталамус
Гипоталамус - высший нервный центр регуляции эндокринных функций. Этот участок промежуточного мозга является также центром симпатического и парасимпатического отделов вегетативной нервной системы. Он контролирует и интегрирует все висцеральные функции организма и объединяет эндокринные механизмы регуляции с нервными. Нервные клетки гипоталамуса, синтезирующие и выделяющие в кровь гормоны, называются нейросекреторными клетками. Эти клетки получают афферентные нервные импульсы из других частей нервной системы, а их аксоны оканчиваются на кровеносных сосудах, образуя аксо-вазальные синапсы, через которые и выделяются гормоны.
В гипоталамусе условно выделяют передний, средний и задний отделы.
В переднем гипоталамусе располагаются парные супраоптические и паравентрикулярные ядра, образованные крупными холинергическими нейросекреторными клетками. В нейронах этих ядер продуцируются белковые нейрогормоны - вазопрессин, или антидиуретический гормон, и окситоцин. У человека выработка антидиуретического гормона совершается преимущественно в супраоптическом ядре, тогда как продукция окситоцина преобладает в паравентрикулярных ядрах.
Вазопрессин вызывает усиление тонуса гладкомышечных клеток артериол, приводящее к повышению артериального давление. Второе название вазопрессина -антидиуретический гормон (АДГ). Воздействуя на почки, он обеспечивает обратное всасывание жидкости, отфильтрованной в первичную мочу из крови.
Окситоцин вызывает сокращения мышечной оболочки матки во время родов, а также сокращение миоэпителиальных клеток молочной железы.
В среднем гипоталамусе располагаются нейросекреторные ядра, содержащие мелкие адренергические нейроны, которые вырабатывают аденогипофизотропные нейрогормоны - либерины и статины. С помощью этих олигопептидных гормонов гипоталамус контролирует гормонообразовательную деятельность аденогипофиза. Либерины стимулируют выделение и продукцию гормонов передней и средней долей гипофиза. Статины угнетают функции аденогипофиза.
Нейросекреторная деятельность гипоталамуса испытывает влияние высших отделов головного мозга, особенно лимбической системы, миндалевидных ядер, гиппокампа и эпифиза. На нейросекреторные функции гипоталамуса сильно влияют также некоторые гормоны, особенно эндорфины и энкефалины.
Эпифиз
Эпифиз - верхний придаток головного мозга, или шишковидное тело (corpus pineale), участвует в регуляции циклических процессов в организме.Эпифиз развивается как выпячивание крыши III желудочка промежуточного мозга. Максимального развития эпифиз достигает у детей до 7 лет.
Строение эпифиза
Снаружи эпифиз окружен тонкой соединительнотканной капсулой, от которой отходят разветвляющиеся перегородки внутрь железы, образующие ее строму и разделяющие ее паренхиму на дольки. У взрослых в строме выявляются плотные слоистые образования - эпифизарные конкреции, или мозговой песок.
В паренхиме различают клетки двух типов - секретообразующие пинеалоциты и поддерживающие глиальные, или интерстициальные клетки. Пинеалоциты располагаются в центральной части долек. Они несколько крупнее опорных нейроглиальных клеток. От тела пинеалоцита отходят длинные отростки, ветвящиеся наподобие дендритов, которые переплетаются с отростками глиальных клеток. Отростки пинеалоцитов направляются к фенестрированным капиллярам и контактируют с ними. Среди пинеалоцитов различают светлые и темные клетки.
Глиальные клетки преобладают на периферии долек. Их отростки направляются к междольковым соединительнотканным перегородкам, образуя своего рода краевую кайму дольки. Эти клетки выполняют, в основном, опорную функцию.
Гормоны эпифиза:
Мелатонин - гормон фотопериодичности, - выделяется преимущественно ночью, т.к. его выделение угнетается импульсами, поступающими из сетчатки глаза. Мелатонин синтезируется пинеалоцитами из серотонина, он угнетает секрецию гонадолиберина гипоталамусом и гонадотропинов передней доли гипофиза. При нарушении функции эпифиза в детском возрасте наблюдается преждевременное половое созревание.
Кроме мелатонина ингибирующее влияние на половые функции обусловливается и другим гормоном эпифиза - антигонадотропином.
У человека эпифиз достигает максимального развития к 5-6 годам жизни, после чего, несмотря на продолжающееся функционирование, начинается его возрастная инволюция. Некоторое количество пинеалоцитов претерпевает атрофию, а строма разрастается, и в ней увеличивается отложение конкреций - фосфатных и карбонатных солей в виде слоистых шариков - т.н. мозговой песок.
Между ядрами переднего гипоталамуса и нейрогипофизом существует тесная морфофункциональная связь, что позволяет выделить гипоталамо-нейрогипофизарную систему в едином гипоталамо-гипофизарном комплексе. Существует тесная морфофункциональная связь медиобазальной части гипоталамуса и аденогипофиза, что обусловливает выделение еще одной гипоталамо-аденогипофизарной системы — единого гипоталамо-гипофизарного комплекса.
Нейросекреторная функция гипоталамуса регулируется норадреналином, серотонином, ацетилхолином, которые синтезируются в зонах центральной нервной системы (ЦНС), не связанных с гипоталамусом. Функция гипоталамуса регулируется также симпатической нервной системой и гормонами эпифиза. Между гипоталамусом и гипофизом существует обратная связь, с помощью которой регулируются их секреторные функции.
Гипофиз как центральный орган нейрогуморальной регуляции: тканевые компоненты. Источники эмбрионального развития, микроскопическое и ультрамикроскопическое строение, функции, связь с гипоталамусом.
Гипофиз
Гипофиз - нижний придаток головного мозга, - также является центральным органом эндокринной системы. Он регулирует активность ряда желез внутренней секреции и служит местом выделения гипоталамических гормонов (вазопрессина и окситоцина).
Гипофиз состоит из двух частей, различных по происхождению, строению и функции: аденогипофиза и нейрогипофиза.
В аденогипофизе различают переднюю долю, промежуточную долю и туберальную часть. Аденогипофиз развивается из гипофизарного кармана выстилки верхней части ротовой полости. Гормонопродуцирующие клетки аденогипофиза являются эпителиальными и имеют эктодермальное происхождение (из эпителия ротовой бухты).
В нейрогипофизе различают заднюю долю, стебель и воронку. Нейрогипофиз образуется как выпячивание промежуточного мозга, т.е. имеет нейроэктодермальное происхождение.
Гипофиз покрыт капсулой из плотной волокнистой ткани. Его строма представлена очень тонкими прослойками соединительной ткани, связанными с сетью ретикулярных волокон, которая в аденогипофизе окружает тяжи эпителиальных клеток и мелкие сосуды.
Передняя доля гипофиза образована разветвленными эпителиальными тяжами - трабекулами, формирующими сравнительно густую сеть. Промежутки между трабекулами заполнены рыхлой волокнистой соединительной тканью и синусоидными капиллярами, оплетающими трабекулы.
Эндокриноциты, располагающиеся по периферии трабекул, содержат в своей цитоплазме секреторные гранулы, которые интенсивно воспринимают красители. Это хромофильные эндокриноциты. Другие клетки, занимающие середину трабекулы, имеют нечеткие границы, и их цитоплазма окрашивается слабо, - это хромофобные эндокриноциты.
Хромофильные эндокриноциты подразделяются на ацидофильные и базофильные соответственно окрашиванию их секреторных гранул.
Ацидофильные эндокриноциты представлены двумя типами клеток.
Первый тип ацидофильных клеток - соматотропы - вырабатывают соматотропный гормон (СТГ), или гормон роста; действие этого гормона опосредовано особыми белками - соматомединами.
Второй тип ацидофильных клеток - лактотропы - вырабатывают лактотропный гормон (ЛТГ), или пролактин, который стимулирует развитие молочных желез и лактацию.
Базофильныеклетки аденогипофиза представлены треми типами клеток (гонадотропами, тиротропами и кортикотропами).
Первый тип базофильных клеток - гонадотропы - вырабатывают два гонадотропных гормона - фолликулостимулирующий и лютеинизирующий:
· фолликулостимулирующий гормон (ФСГ) стимулирует рост фолликулов яичника и сперматогенез;
· лютеинизирующий гормон (ЛГ) способствует секреции женских и мужских половых гормонов и формирование желтого тела.
Второй тип базофильных клеток - тиротропы - вырабатывают тиреотропный гормон (ТТГ), стимулирующий активность щитовидной железы.
Третий тип базофильных клеток - кортикотропы - вырабатывают адренокортикотропный гормон (АКТГ), который стимулирует активность коры надпочечников.
Большинство клеток аденогипофиза - хромофобные. В отличие от описанных хромофильных клеток, хромофобные слабо воспринимает красители и не содержат отчетливых секреторных гранул.
Хромофобные клетки разнородны, к ним относятся:
· хромофильные клетки - после выведения гранул секрета;
· малодифференцированные камбиальные элементы;
· т.н. фолликулярно-звездчатые клетки.
Средняя (промежуточная) доля гипофиза представлена узкой полоской эпителия. Эндокриноциты промежуточной доли способны вырабатывать меланоцитостимулирующийгормон (МСГ), а также липотропный гормон (ЛПГ), усиливающий метаболизм липидов.
Между ядрами переднего гипоталамуса и нейрогипофизом существует тесная морфофункциональная связь, что позволяет выделить гипоталамо-нейрогипофизарную систему в едином гипоталамо-гипофизарном комплексе. Существует тесная морфофункциональная связь медиобазальной части гипоталамуса и аденогипофиза, что обусловливает выделение еще одной гипоталамо-аденогипофизарной системы — единого гипоталамо-гипофизарного комплекса.
Нейросекреторная функция гипоталамуса регулируется норадреналином, серотонином, ацетилхолином, которые синтезируются в зонах центральной нервной системы (ЦНС), не связанных с гипоталамусом. Функция гипоталамуса регулируется также симпатической нервной системой и гормонами эпифиза. Между гипоталамусом и гипофизом существует обратная связь, с помощью которой регулируются их секреторные функции.
Периферические эндокринные железы (щитовидная и околощитовидная): тканевые компоненты, источники эмбрионального развития, микроскопическое и ультрамикроскопическое строение, функции, регенерация. Гормоны и секреторный цикл фолликулярных тироцитов. Участие щитовидной и околощитовидных желез в регуляции обмена кальция.
Бранхиогенная группа эндокринных желез развивается из зачатков жаберных карманов (т.е. из глоточной энтодермы) и включает щитовидную и околощитовидные железы. Из зачатков жаберных карманов развивается также вилочковая железа - тимус. Щитовидная железа и околощитовидные железы связаны не только общим источником развития, но и функционально, выполняя главную роль в поддержании метаболического статуса и гомеостаза внутренней среды организма.
Гормоны этих желез регулируют интенсивность основного обмена и концентрацию кальция в крови.
Щитовидная железа
Это самая крупная из эндокринных желез, относится к железам фолликулярного типа. Она вырабатывает тиреоидные гормоны, которые регулируют активность (скорость) метаболических реакций и процессы развития. Кроме того, в щитовидной железе вырабатывается гормон кальцитонин, участвующий в регуляции кальциевого обмена.
Строение щитовидной железы
Щитовидная железа окружена соединительнотканной капсулой, прослойки которой направляются вглубь и разделяют орган на дольки. В этих прослойках располагаются многочисленные сосуды микроциркуляторного русла и нервы.
Основными структурными компонентами паренхимы железы являются фолликулы - замкнутые шаровидные или слегка вытянутые образования с полостью внутри. Стенка фолликулов образована одним слоем эпителиальных клеток - фолликулярных тироцитов, среди которых встречаются одиночные клетки нейрального происхождения - парафолликулярные С-клетки.
Фолликулы разделяются тонкими прослойками рыхлой волокнистой соединительной ткани с многочисленными кровеносными и лимфатическими капиллярами, оплетающими фолликулы, а также тучными клетками и лимфоцитами.
Фолликулярные эндокриноциты, или тироциты, - это железистые клетки, составляющие большую часть стенки фолликулов. В фолликулах тироциты располагаются в один слой на базальной мембране.
Тироциты изменяют свою форму от плоской до циллиндрической в зависимости от функционального состояния железы. Функция тироцитов заключается в синтезе и выделении йод-содержащих тиреоидных гормонов - Т3, или трийодтиронина, и Т4, или тироксина.
В секреторном цикле фолликулярных эндокриноцитов различают две основные фазы: фазу продукции и фазу выведения гормонов.
Фаза продукции включает:
· поступление предшественников тироглобулина (аминокислот, углеводов, ионов, воды, йодидов), приносимых из кровеносного русла в тироциты;
· синтез фермента тиропероксидазы, окисляющей йодиды и обеспечивающей их соединение с тироглобулином на поверхности тироцитов и в полости фолликула и образование коллоида;
· синтез полипептидных цепочек самого тироглобулина в гранулярной эндоплазматической сети и их гликозилирование (т.е. соединение с нейтральными сахарами и сиаловой кислотой) с помощью тиропероксидазы (в аппарате Гольджи).
Гипофизарный тиротропный гормон (ТТГ) усиливает функцию щитовидной железы, стимулируя поглощение тироглобулина микроворсинками тироцитов, а также его расщепление в фаголизосомах с высвобождением активных гормонов.
Тиреоидные гормоны (Т3 и Т4) участвуют в регуляции метаболических реакций, влияют на рост и дифференцировку тканей, особенно на развитие нервной системы.
Второй вид эндокриноцитов щитовидной железы - парафолликулярные клетки, или C-клетки, или же кальцитониноциты. Это клетки нейрального происхождения. Их главная функция выработка тиреокальцитонина, снижающего уровень кальция в крови.
Парафолликулярные клетки осуществляют биосинтез пептидных гормонов -кальцитонина и соматостатина, а также участвуют в образовании нейроаминов (норадреналина и серотонина) путем декарбоксилирования соответствующих аминокислот-предшественников.
Регенерация щитовидной железы в физиологических условиях осуществляется очень медленно, однако способность паренхимы к пролиферации велика. Источником роста тироидной паренхимы является эпителий фолликулов. Нарушение механизмов регенерации может приводить к разрастанию железы с образованием зоба.
Дата добавления: 2018-06-01; просмотров: 692; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!