Принцип работы электромагнитных систем



Электромагнитная катушка индуктивности работает во всех известных напряжениях переменного и постоянного тока (220В АС, 24 AC, 24 DC, 5 DC и др.). Соленоиды помещают в специальные корпуса, защищенные от воды. За счет низкого потребления энергии, особенно для небольших электромагнитных систем, возможно управление с помощью полупроводниковых схем.

Чем меньше воздушный зазор между стопором и электромагнитным сердечником, тем сильнее возрастает напряженность магнитного поля, вне зависимости от вида и величины подаваемого напряжения. Электромагнитные системы с переменным током имеют куда большую величину штока и силу магнитного поля, чем системы с постоянным током.

Когда подается напряжение и воздушный зазор имеет максимальную протяженность, системы переменного тока, потребляя большое количество энергии, поднимают шток и зазор закрывается. Благодаря этому увеличивается мощность выходного потока и создается перепад давления. Если же подается постоянный ток, то увеличение скорости потока происходит довольно медленно, до тех пор, пока значение напряжения не станет фиксированным. По этой причине клапаны могут регулировать системы только низкого давления, за исключением тех, что оснащены небольшими проходными отверстиями.

Иначе говоря, в статическом положении, при условии, что катушка обесточена и устройство находится в закрытом/открытом положении (в зависимости от типа), поршень находится в герметичном соединении с седлом клапана. При подаче напряжения, катушка передает импульс на привод и шток открывается. Это возможно потому, что катушка формирует магнитное поле, которое в свою очередь воздействует на плунжер и втягивается в него.

Вопрос

Электродвигатели кранов.

Крановые электродвигатели трехфазного переменного тока (асинхронные) и постоянного тока (последовательного или параллельного возбуждения) работают, как правило, в повторно-кратковременном режиме при широком регулирования частоты вращения, причем работа их сопровождается значительными перегрузками, частыми пусками, реверсами и торможениями.

Кроме того, электродвигатели крановых механизмов работают в условиях повышенной тряски и вибраций. В ряде металлургических цехов они, помимо всего этого, подвергаются воздействию высокой температуры (до 60-70 оС), паров и газов.

В связи с этим по своим технико-экономическим показателям и характеристикам крановые электродвигатели значительно отличаются от электродвигателей общепромышленного исполнения.

Основные особенности крановых электродвигателей:

  • исполнение, обычно, закрытое,
  • изоляционные материалы имеют класс нагревостойкости F и H,
  • момент инерции ротора по возможности минимальный, а поминальные частоты вращения относительно небольшие - для снижения потерь энергии при переходных процессах,
  • магнитный поток относительно велик - для обеспечения большой перегрузочной способности по моменту,
  • значение кратковременной перегрузки по моменту для крановых электродвигателей постоянного тока в часовом режиме составляет 2,15 - 5,0, а для электродвигателей переменного тока - 2,3 - 3,5,
  • отношение максимально допустимой рабочей частоты вращения к номинальной составляет для электродвигателей постоянного тока 3,5 - 4,9, для электродвигателей переменного тока 2,5,
  • для крановых электродвигателей переменного тока за номинальный принят режим с ПВ - режим 80 мин (часовой).

Наиболее широко для привода крановых механизмов применяются трехфазные асинхронные электродвигатели с фазным ротором, обеспечивающие регулирование скорости и плавный пуск при относительно большом значении нагрузки на валу.

Крановые электродвигатели с фазным ротором устанавливают на крановых механизмах при среднем, тяжелом и весьма тяжелом режимах работы.

Асинхронные электродвигатели с короткозамкнутым ротором применяются реже (для привода механизмов передвижения малоответственных тихоходных кранов) из-за несколько пониженного пускового момента и значительных пусковых токов, хотя масса их примерно на 8 % меньше, чем у двигателей с фазным ротором, а стоимость в 1,3 раза меньше, чем у этих двигателей при одинаковой мощности.

Преимуществами асинхронных электродвигателей по сравнению с электродвигателями постоянного тока являются их относительно меньшая стоимость, простота обслуживания и ремонта.

Масса кранового асинхронного электродвигателя с наружной самовентиляцией в 2,2 - 3 раза меньше массы кранового электродвигателя постоянного тока при одинаковых поминальных моментах, а масса меди соответственно примерно в 5 раз меньше.

Электродвигатели постоянного тока применяют в тех случаях, когда требуется широкое и плавное регулирование скорости, для приводов с большим числом включений в час, при необходимости регулирования скорости вверх от номинальной, для работы в системах Г - Д и ТП - Д. В последнее время, в связи с развитием частотно-регулируемого электропривода, двигатели постоянного тока начали вытеснятся асинхронными электродвигателями, работающими в комплекте с частотными преобразователями.

 

Вопрос

Виды и системы освещения.

По своему функциональному назначению освещение подразделяется на четыре вида – рабочее, аварийное, эвакуационное и охранное.

Рабочее освещение создает требуемую по нормам освещенность, обеспечивая необходимые условия работы. Рабочее освещение создается светильниками. Светильником называется световой прибор, состоящий из источника света и осветительной арматуры. Светильники в помещениях располагаются рядами по вершинам прямоугольников, ромбов, равносторонних треугольников на высоте, обеспечивающей нормальную освещенность.

Светильники рабочего освещения включаются, как правило, на напряжение 220 В. При перерыве в электроснабжении рабочего освещения должно быть предусмотрено аварийное освещение для продолжения работы или эвакуационное – для эвакуации людей из рабочего помещения.

Аварийное освещение устраивается в помещениях, в которых внезапное отключение рабочего освещения может привести к тяжелым последствиям для людей или оборудования, может вызвать длительное расстройство технологического процесса. При аварийном освещении освещенность на рабочих местах должна быть не менее 10% рабочей освещенности, установленной для нормальных условий.

Светильники аварийного освещения располагаются и работают совместно со светильниками рабочего освещения, но подключаются к независимому источнику питания. Если светильники рабочего и аварийного освещения чередуются, то при отключении рабочего освещения аварийное освещение будет обеспечивать 50% освещенности, что позволяет продолжать многие виды работ.

Эвакуационное освещение необходимо для создания условий безопасного выхода из рабочей зоны и из помещения при погасании рабочего освещения. Если в помещении работают более 50 человек, эвакуационное освещение необходимо даже при отсутствии оборудования в этом помещении. Эвакуационное освещение должно обеспечивать освещенность не менее 0,3 лк.

В темное время суток во многих помещениях и вдоль границ территории необходимо искусственное охранное освещение для несения дежурства пожарной и военизированной охраны. Охранное освещение должно обеспечивать освещенность не менее 0,5 лк.

Различают три системы рабочего освещения – общее, местное и комбинированное. Общее освещение предназначено для создания необходимой освещенности рабочих поверхностей, объектов различения и помещения в целом. Оно может быть равномерным или локализованным. Общее равномерное освещение обеспечивает равномерное распределение освещенности заданного уровня по всей площади помещения. При этом светильники, как правило, выбираются одного типа и мощности и устанавливаются на одной высоте.

При локальном размещении светильников обеспечивается нужное направление светового потока, лучшее освещение, чем при равномерном освещении, благодаря устранению теней от оборудования. Положение светильников выбирается в зависимости от расположения рабочих поверхностей или производственного оборудования.

Местное освещение предназначается для освещения отдельных рабочих поверхностей. Светильники обычно устанавливаются в непосредственной близости от объекта различения. В помещениях с повышенной опасностью и особо опасных в отношении поражения электрическим током должны включаться на напряжение не выше 36 В.

Сочетание общего и местного освещения называется системой комбинированного освещения.

24. Люминесцентные лампы. Характеристики.

Люминесцентные лампы представляют собой газоразрядные источники света, принцип действия которых заключается в следующем: под воздействием электрического поля в парах ртути, закачанной в герметичную стеклянную трубку, возникает электрический разряд, сопровождающийся ультрафиолетовым излучением. Нанесенный на внутреннюю поверхность трубки люминофор преобразует ультрафиолетовое излучение в видимый свет. Подбирая соответствующие виды люминофора, можно изменять цветовые характеристики ламп. Одной из таких характеристик является общий индекс цветопередачи (Ra), большее значение Ra соответствует лучшему воспроизведению цвета. Максимальное значение - 100. Люминесцентные лампы создают значительно более рассеянный свет, чем малоразмерные источники, такие как лампы накаливания, галогенные и газоразрядные лампы высокого давления. В силу этого свойства и благодаря высокой световой отдаче эти лампы идеально подходят для освещения больших помещений, где не требуется в течении суток часто включать и выключать освещение. По своему спектральному составу излучения все люминесцентные лампы можно условно разделить на три типа:

1. Стандартные люминесцентные лампы.

2. Люминесцентные лампы улучшенной цветопередачи.

3. Специальные люминесцентные лампы.

Стандартные люминесцентные лампы.
В лампах этой серии применяются однослойные люминофоры, позволяющие получить различные оттенки белого света. Лампы этого типа широко используются в установках общего освещения (офисные и производственные помещения, магазины, торговые залы).

Люминесцентные лампы улучшенной цветопередачи.
В этих лампах используется высокоэффективный трех- или пятислойный люминофор, который позволяет хорошо передавать цвет различных искусственных и естественных объектов. При этом световой поток у ламп улучшенной цветопередачи примерно на 12% выше чем у стандартных люминесцентных ламп. Наиболее полная передача цветовой палитры окружающей обстановки создает более комфортные условия для восприятия. Лампы улучшенной цветопередачи применяются в основном там, где при помощи общего освещения нужно наиболее четко передать цвета и оттенки окружающих предметов (мебельные салоны, магазины тканей, выставочные галереи, витрины и т.д.).

Специальные люминесцентные лампы могут иметь различные добавки или особый тип люминофора, позволяющие выделить из спектра определенные линии или полосы заданной частоты, в зависимости от назначения лампы. Они могут использоваться например в гастрономии для подсветки пищевых продуктов, в медицине (бактерицидные лампы), в рекламных установках, шоу-бизнесе и т.д.

 

Вопрос

Тормозные устройства.


Дата добавления: 2018-06-01; просмотров: 457; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!