Единицы компьютерной информации



Содержание

1. Представление информации в компьютере, единицы измерения информации. Кодирование.

2. Системы счисления.

3. Алгебра логики.

4. Тригеры.

 

Представление информации в компьютере, единицы измерения информации

Человек для записи текстовой информации использует буквы (в русском алфавите – 33). Комбинациями из десяти цифр (от 0 до 9) мы записываем числовые данные. При работе с графической информацией пользуемся палитрой из миллионов цветов. Наши уши различают звуки в диапазоне от 16 до 20000 Гц.Если добавить к этому обоняние, вкусовые и тактильные ощущения, получится огромнейшее разнообразие информационных импульсов, которые может воспринимать, хранить и обрабатывать наш мозг. Но при помощи технических средств невозможно воссоздать аналогичную систему работы с информацией.

В технике намного удобнее иметь дело с множеством простых элементов, чем с небольшим количеством сложных.

Вся информация в компьютере представляется с помощью нулей и единиц, поэтому компьютер может обрабатывать только информацию, представленную в цифровой форме.

Для преобразования числовой, текстовой, графической, звуковой информации в цифровую необходимо применить кодирование.

 

Двоичное кодирование информации

Любая информация внутри компьютера хранится и обрабатывается в виде длинного кода, состоящего всего из двух символов. Этот код называется двоичным или бинарным. Идея использования бинарного кода принадлежит немецкому математику Готфриду Лейбницу (1646-1716). Он разработал двоичную арифметику и даже сделал чертеж двоичной вычислительной машины, но не сумел ее построить.

Используя разные комбинации большого количества двух символов, в бинарном коде можно зашифровать любую числовую, текстовую, звуковую или графическую информацию. По своей сути он очень похож на всем известный код Морзе, в котором двумя символами (длинный и короткий импульс) шифруются буквы для передачи текстовой информации по проводам или другим способом.

Компьютер является ничем иным, как машиной, предназначенной для хранения и обработки информации в таком виде, принимает одно из двух состояний по аналогии: лампочка горит или нет, магнитное поле есть или его нет и т.д. Бинарный код внутри компьютера хранится в виде комбинаций большого количества элементов, каждый из которых может иметь одно из двух состояний.

В ЭВМ в форме бинарного кода хранятся не только текстовые данные, но и программы, музыка, изображения и даже видео высокой четкости.

Перед выводом информации на экран, в аудиосистему или распечатыванием, компьютер "переводит" ее в понятный человеку язык. Но внутри компьютера она хранится и обрабатывается исключительно в виде двоичного кода.

Перевод данных в двоичный код называется кодированием.

Кодирование – это преобразование данных одного типа через данные другого типа.

Противоположный процесс, в результате которого бинарный код превращается в привычную для людей информацию, называется декодированием.

С технической стороны компьютерный двоичный код реализуется наличием или отсутствием определенных свойств (импульсов) у мельчайших запоминающих элементов. Эти импульсы могут быть:

• фотооптическими

Так, поверхность любого оптического диска (CD, DVD или BluRay) состоит из спирали, которую формируют мелкие отрезки. Каждый из них может быть либо темного, либо светлого цвета. Диск быстро вращается в дисководе. На его спиральной дорожке фокусируется лазер, отражение которого попадает на фотоэлемент. Темные участки спирали поглощают свет и не передают его на фотоэлемент, светлые – наоборот, отражая свет, передают импульс фотоэлементу. В результате фотоэлемент получает информацию, зашифрованную в дорожке диска в виде темных и светлых точек.

• магнитными

Например, внутри жесткого диска находится быстро вращающаяся пластина. Вся ее поверхность тоже представляет собой спираль, состоящую из последовательности миллионов мелких участков. Каждый из них является элементом, который может принимать одно из двух состояний: "намагниченное", "ненамагниченное". Эти элементы и формируют двоичный код, в котором кодируется какая-то информация. Считывание состояния элементов осуществляется специальной головкой, которая быстро движется по поверхности пластины;

• электрическими

Например, оперативная память компьютера является микросхемой, состоящей из миллионов маленьких ячеек, созданных из микроскопических транзисторов и конденсаторов. Каждая такая ячейка может либо содержать электрический заряд, либо нет. Комбинации заряженных и разряженных ячеек оперативной памяти и формируют в ней двоичный код.

В аналогичной форме информация хранится и во всех других запоминающих микросхемах (флешки, SSD-носители и др.).

Процессор компьютера обрабатывает двоичный код тоже в виде электрических импульсов.

Иногда можно встретить ошибочное мнение, что бинарный код внутри компьютера записан в виде обычных нулей и единиц. Это следствие непонимания технической стороны вопроса. Привычных для нас нулей и единиц в компьютере нет. "Символами" компьютерного двоичного кода является наличие или отсутствие у мельчайшего запоминающего элемента определенного свойства (см. выше).

Чтобы было нагляднее, в учебных материалах отсутствие у элемента такого свойства лишь условнообозначают нулем, а его наличие – единицей. Но с таким же успехом их можно бы было обозначать точкой и тире или крестиком и ноликом.

 

Единицы компьютерной информации

В ЭВМ применяется система двоичного кодирования, основанная на представлении данных последовательностью двух знаков: 1 и 0, которые называются двоичными цифрами (binarydigit – сокращенно bit). Таким образом, единицей информации в компьютере является один бит, т.е. двоичный разряд, который может принимать значение 0 или 1. Битом является, например, каждая темная или светлая точка дорожки оптического диска, каждая запоминающая ячейка оперативной памяти компьютера и т.д.

Но каждый отдельный бит сам по себе не имеет практической ценности. Для кодирования информации используются блоки из нескольких битов.

Представим, например, что в каком-то запоминающем устройстве содержится только один бит. В нем можно будет закодировать всего одно из двух состояний чего либо, например, одну из двух цифр или один из двух цветов. Понятное дело, что практическая ценность такого носителя минимальна.

Блок из 2 битов может принимать одно из 4 состояний:

В 3-хбитном блоке можно закодировать уже одно из 8 состояний:

Ну а 8-битный блок может принимать аж 256 разных состояний. Это уже достаточно существенная частичка двоичного кода, позволяющая отобразить один из значительного количества вариантов.

Например, каждому состоянию 8-битного блока можно сопоставить какую-то букву. Вариантов, а их 256, будет достаточно для кодирования всех русских букв, включая строчные и прописные их варианты, а также всех знаков препинания. Заменяя каждую букву соответствующим 8-мибитным блоком, из двоичного кода можно составить текст.

Этот принцип и используется для записи в компьютере текстовой информации (подробнее речь об этом пойдет ниже).

Как видите, 8-битная ячейка имеет вполне реальную практическую ценность. Поэтому ее и решили считать минимальной единицей компьютерной информации. Эта единица получила название байт.

Текстовые файлы состоят из сотен, тысяч или даже десятков тысяч букв. Соответственно, для их хранения в двоичном коде требуются сотни, тысячи или десятки тысяч байтов.

Поэтому на практике гораздо чаще приходится имеет дело не с байтами, а с более крупными единицами:

• килобайтами (1 килобайт = 1024 байт);

• мегабайтами (1 мегабайт = 1024 килобайт);

• гигабайтами (1 гигабайт = 1024 мегабайт);

• терабайтами (1 терабайт = 1024 гигабайт).

Целые числа кодируются двоичным кодом довольно просто (путем деления числа на два). Для кодирования нечисловой информации используется следующий алгоритм: все возможные значения кодируемой информации нумеруются и эти номера кодируются с помощью двоичного кода. Например, для представления текстовой информации используется таблица нумерации символов или таблица кодировки символов, в которой каждому символу соответствует целое число (порядковый номер). Восемь двоичных разрядов могут закодировать 256 различных символов.

 


Дата добавления: 2018-06-01; просмотров: 466; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!