Работа сил электростатического поля при перемещении заряда. Потенциал электрического поля. Потенциал поля точечного заряда.



При перемещении пробного заряда q в электрическом поле электрические силы совершают работу. Эта работа при малом перемещении равна (рис. 1.4.1):

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Силовые поля, обладающие этим свойством, называют потенциальными или консервативными.

Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

Потенциал φ является энергетической характеристикой электростатического поля.

Работа A12 по перемещению электрического заряда q из начальной точки (1) в конечную точку (2) равна произведению заряда на разность потенциалов (φ1 – φ2) начальной и конечной точек:

A12 = Wp1 – Wp2 = qφ1 – qφ2 = q(φ1 – φ2).

В Международной системе единиц (СИ) единицей потенциала является Вольт (В).

1 В = 1 Дж / 1 Кл

Связь между вектором напряжённости электрического поля и потенциалом. Эквипотенциальная поверхность и силовая линия. 

Итак, электростатическое поле можно описать либо с помощью векторной величины , либо с помощью скалярной величины φ. Очевидно, что между этими величинами должна существовать определенная связь. Найдем ее:

Изобразим перемещение заряда q по произвольному пути l (Рис. 3.1) в электростатическом поле .

Работу, совершенную силами электростатического поля на бесконечно малом отрезке dl, можно найти так:

  (3.4.1)  

где Elпроекция на ; dl– произвольное направление перемещения заряда.

С другой стороны, как мы показали, эта работа, если она совершена электростатическим полем, равна убыли потенциальной энергии заряда, перемещенного на расстоянии dl:

,

отсюда

  (3.4.2)  

Для ориентации dl (направление перемещения) в пространстве, надо знать проекции на оси координат:

  (3.4.3)  

По определению градиента сумма первых производных от какой-либо функции по координатам есть градиент этой функции, то есть

вектор, показывающий направление наибыстрейшего увеличения функции.

Тогда коротко связь между и φ записывается так:

  (3.4.4)  

или так:

  , (3.4.5)  

где (набла) означает символический вектор, называемый оператором Гамильтона.

Знак минус говорит о том, что вектор направлен в сторону уменьшения потенциала электрического поля.

Направление силовой линии (линии напряженности) в каждой точке совпадает с направлением . Отсюда следует, что напряженность равна разности потенциалов U на единицу длины силовой линии.

Именно вдоль силовой линии происходит максимальное изменение потенциала. Поэтому всегда можно определить между двумя точками, измеряя U между ними, причем тем точнее, чем ближе точки. В однородном электрическом поле силовые линии – прямые. Поэтому здесь определить наиболее просто:

  . (3.6.1)  

Теперь дадим определение эквипотенциальной поверхности. Воображаемая поверхность, все точки которой имеют одинаковый потенциал, называется эквипотенциальной поверхностью. Уравнение этой поверхности

 

 

30. Поток вектора напряжённости электрического поля через поверхность. Теорема Гаусса в электростатике.
Как и для любого векторного поля важно рассмотреть свойства потока электрического поля. Поток электрического поля определяется традиционно.

Выделим малую площадку площадью ΔS, ориентация которой задается единичным вектором нормали (рис. 157).

В пределах малой площадки электрическое поле можно считать однородным [1], тогда поток вектора напряженности ΔФE определяется как произведение площади площадки на нормальную составляющую вектора напряженности

. (1)

где — скалярное произведение векторов и ; En — нормальная к площадке компонента вектора напряженности.

В произвольном электростатическом поле поток вектора напряженности через произвольную поверхность, определяется следующим образом (рис. 158):

- поверхность разбивается на малые площадки ΔS (которые можно считать плоскими);

- определяется вектор напряженности на этой площадке (который в пределах площадки можно считать постоянным);

- вычисляется сумма потоков через все площадки, на которые разбита поверхность

.

Эта сумма называется потоком вектора напряженности электрического поля через заданную поверхность.

Теорема Гаусса в интегральной форме. Общая формулировка: Поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.

СГС СИ

где

§ — поток вектора напряжённости электрического поля через замкнутую поверхность .

§ — полный заряд, содержащийся в объёме, который ограничивает поверхность .

§ — электрическая постоянная.

В дифференциальной форме теорема Гаусса выражается следующим образом:

СГС СИ

Здесь — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а — оператор набла.

 


Дата добавления: 2018-06-27; просмотров: 1220; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!