Анализ современных методов моделирования рабочих процессов



В двигателях внутреннего сгорания

 

 

В настоящее время процесс сгорания в бензиновых и дизельных двигателях достаточно широко исследован с теоретической и практической точек зрения [ 1, 3…7].

Вместе с тем, широкое использование в последнее время в автомобильных двигателях систем впрыскивания топлива с принудительным воспламенением заставляет более подробно и более тонко исследовать проблему моделирования процессов энергопреобразования и тепловыделения в указанных и других схемах ввиду ряда имеющих место специфических особенностей работы данных двигателей.

Определенные наработки в данном вопросе представлены в ряде диссертационных работ [ 11…14 ], а также в некоторых других публикациях [ 15 - 18 ].

В частности следует отметить, что, например в работе [ 15 ] выполнено моделирование действительных термодинамических процессов в цилиндре ДВС. В результате моделирования были определены индикаторный КПД, индикаторная работа и работа насосных ходов, расход газов во впускных и выпускных клапанах или окнах, в турбине и компрессоре, эффективная мощность, расход топлива, КПД и другие показатели эффективности двигателя внутреннего сгорания.

В работе [ 16 ] описано моделирование процессов горения и теплообмена в ДВС с искровым зажиганием с учетом камеры сгорания.

Достаточно подробно математическим методам моделирования процессов сгорания посвящен учебник [ 17 ].

В нем описана модель изохорного сгорания – представлены условия изохорного сгорания, порядок определения температуры и давления рабочего тела в конце изохорного сгорания, дана модель изохорного - изобарного (смешанного сгорания) и приведен расчет процесса сгорания с изохорно-изобарным подводом теплоты, выполнен расчёт процесса сгорания с учётом динамики выгорания топлива, представлено полуэмпирическое кинетическое уравнение выгорания топлива в двигателях, даны кинетические условия сгорания топлива и другие показатели эффективности сгорания топлива.

В работе [ 18 ] рассмотрены вопросы, касающиеся процессов перемешивании, горения, а также определения полей температуры сгорания, скоростей, концентраций компонент с учетом кинетики процесса, определены формы факела, границы зоны смешения и характера течения.

Вместе с тем, данные публикации не в полной мере отвечают требованиям поставленной перед дипломной работой задачи, а именно, обеспечить оптимальное использование тепловыделения в процессе сгорания и повысить топливную эффективность работы ДВС.

В этой связи возникает необходимость более точного моделирования процессов тепловыделения и оптимизации процесса сгорания топливо - воздушной смеси с целью получения требуемых показателей эффективности инжекторных ДВС.

 

 

ГЛАВА 2. Особенности построения математической модели процесса тепловыделения в цикле сгорания инжекторного

Двигателя

 

 

Характер процессов смесеобразования и сгорания в двигателе

С принудительным воспламенением

 

Протекание процессов смесеобразования и сгорания в двигателях с принудительным воспламенением помимо режимных факторов зависит от физико-химических свойств топлива и от способа его подачи (карбюрация, впрыскивание бензина, смеситель газового двигателя).

Смесеобразование влияет на последующее сгорание топлива, так же как скорость и полнота сгорания зависят от состава и качества смеси, на которое влияют испарение топлива и его смешение с воздухом.

 

Смесеобразование в инжекторных двигателях

 

Под смесеобразованием в двигателе с принудительным воспламенением понимают комплекс взаимосвязанных процессов, имеющих место при дозировании топлива и воздуха, распыливании, испарении и перемешивании топлива с воздухом.

Для четырехтактных двигателей с принудительным воспламенением применяется, как правило, внешнее смесеобразование.

У четырехтактных двигателей смесеобразование начинается в карбюраторе, форсунке или смесителе, продолжается во впускном тракте и заканчивается в цилиндре. Механизмы смесеобразования при карбюрации и центральном впрыскивании  имеют много общего, так как топливо в обоих случаях вводится в воздушный поток в одном и том же месте впускного тракта - перед впускным трубопроводом (коллектором).

Распыливание топлива. Сразу же после выхода струи топлива или топливовоздушной смеси (ТВС) во впускной коллектор начинается ее распад в результате воздействия сил аэродинамического сопротивления и наличия воздуха, причем скорость воздуха существенно выше скорости топлива. Такой способ распыливания называют воздушным или инжекторным, так как для дробления топлива используется кинетическая энергия воздуха. На расстоянии нескольких миллиметров от отверстия распылителя струя распадается на пленки и капли различных диаметров от 100 до 600 мкм. В дальнейшем капли могут дробиться на более мелкие. Улучшение процесса распыливания увеличивает суммарную поверхность капель и способствует более быстрому их испарению. Средний диаметр капель при центральном впрыскивании при проходе через клапанную щель составляет 50…65 мкм [ 8 ].

Системы с впрыскиванием осуществляют подачу топлива под давлением, как правило, во впускной трубопровод (центральное впрыскивание) или впускные каналы в головке цилиндров (распределенное впрыскивание)

Для обеих систем мелкость распыливания зависит от давления впрыскивания, формы раскрывающих отверстий форсунки и скорости течения бензина в них, а также от вязкости и поверхностного натяжения топлива.

В системах впрыскивания бензина наибольшее применение получили электромагнитные форсунки [ 1 ], к которым топливо подводится под давлением 0,2...0,4 МПа, что обеспечивает получение капель со средним диаметром по Заутеру для струйной, штифтовой и центробежной форсунок 220...400 мкм, 200...270 мкм и 50...100 мкм соответственно[ 1, 3 ].

Процесс распыливания топлива происходит и при прохождении жидкой фазой (пленка, капли) сечения между впускным клапаном и его седлом, а на частичных нагрузках и в щели, образуемой прикрытой дроссельной заслонкой.

Образование и движение пленки топлива. Направление движения топлива при выходе его из форсунки, силы, возникающие при взаимодействии капель с потоком воздуха, а также гравитационные силы обусловливают оседание частиц на стенках впускного трубопровода и «горячего» впускного клапана . Растекаясь на поверхности, капли образуют топливную пленку. При достаточно большом количестве пленки с нее потоком воздуха наблюдаются вторичные процессы образования капель. На пленку топлива воздействуют силы сцепления со стенкой, касательное усилие со стороны потока воздуха, перепад статического давления по периметру сечения, а также силы тяжести и поверхностного натяжения. В результате действия этих сил траектория движения пленки приобретает сложный характер. Скорость движения пленки в несколько десятков раз меньше скорости потока смеси.

Количество пленки, образующейся при впрыскивании бензина, зависит от места установки форсунки, дальнобойности струи, мелкости распыливания, а при распределенном впрыскивании в каждый цилиндр - от момента его начала. Опыты показывают, что при любом способе организации впрыскивания в пленку высаживается до 60...80% топлива [ 3 ].

Испарение топлива. Для обеспечения качественного смесеобразования прежде всего необходимо испарить топливо, так как только при одинаковом агрегатном состоянии (гомогенная смесь) диффузионные процессы смешения паров топлива и воздуха протекают с наибольшей полнотой. До поступления в цилиндр ТВС является двухфазной, так как топливо в ней находится в газовой и жидкой фазах.

С поверхности капель и пленки топливо испаряется при сравнительно небольших температурах. Капли находятся во впускной системе двигателя примерно в течение 0,002...0,05 с.

За это время успевают полностью испариться лишь самые мелкие из них. Низкие скорости испарения капель определяются главным образом молекулярным механизмом переноса теплоты и массы, поскольку большую часть времени капли движутся при незначительном обдуве воздухом. Поэтому на испарение капель заметно влияют мелкость распыливания и начальная температура топлива, влияние же температуры воздушного потока незначительно.

Существенную роль играет испарение с поверхности пленки, которая интенсивно обдувается потоком. Большое значение для испарения пленки имеет теплообмен со стенками впускного тракта, поэтому при центральном впрыскивании и карбюрации впускной трубопровод обычно обогревается охлаждающей двигатель жидкостью или отработавшими газами.

В зависимости от конструкции впускного тракта и режима работы карбюраторного двигателя и при центральном впрыскивании на выходе из впускного трубопровода содержание в горючей смеси паров топлива может составлять 60...95% [ 3 ]. Процесс испарения топлива продолжается в цилиндре во время тактов впуска и сжатия, к началу сгорания топливо практически испаряется полностью.

Особенно интенсивно испаряется пленка с поверхности впускного клапана, однако продолжительность этого испарения невелика, поэтому при распределенном впрыскивании на тарелку впускного клапана и работе двигателя с полным дросселем до поступления в цилиндр испаряется лишь 30...50% цикловой дозы топлива [ 3 ].

Доля топлива, испарившегося перед поступлением в цилиндр, на режимах холодного пуска может уменьшаться до 5...10%.

Неравномерность состава смеси по цилиндрам. Скорости движения воздуха и паров топлива во впускном тракте равны, а скорость капель на 2...6 м/с меньше, чем скорость воздуха. Из-за неодинакового сопротивления ветвей впускного тракта наполнение отдельных цилиндров воздухом может отличаться, но не более чем на 2...4%.

Распределение топлива по каналам разветвленного впускного трубопровода, а значит, и по цилиндрам карбюраторного двигателя или при центральном впрыскивании может характеризоваться значительно большей неравномерностью главным образом за счет неодинакового распределения пленки. Это означает, что и состав смеси в цилиндрах будет неодинаковым.

Степень неравномерности состава смесиоценивается показателем

Di =                                                       ( 2.1.1)

где αi – коэффициент избытка воздуха в i – ом цилиндре.

Для более равномерного распределения состава смеси по цилиндрам необходимо обеспечить возможно более полное испарение топлива до зон разветвления впускного трубопровода. В этой связи, например, улучшение распыливания уменьшает степень неравномерности состава смеси.

 


Дата добавления: 2018-05-13; просмотров: 383; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!