Оптимальное управление двигателем в поле эксплуатационных



Режимов

 

Характерной особенностью использования двигателей на автомобильной технике является чрезвычайно широкий диапазон условий их работы. В зависимости от рельефа местности, качества дорожного покрытия и необходимой скорости движения значительно изменяются скоростные и нагрузочные режимы, а также тепловое состояние двигателей, причем преобладающими являются частичные режимы.

Большую часть времени автомобильные двигатели работают на неустановившихся резко переменных во времени частотах вращения коленчатого вала и нагрузках. Подвержены колебаниям и внешние атмосферные условия: давление, температура и влажность окружающей среды.

В связи с этим уровень эффективности энергопреобразования, достигнутый на каком-либо одном расчетном режиме работы, чрезвычайно сложно сохранить во всем поле эксплуатационных режимов. Двигатели, доведенные и настроенные по всем регулировкам на режиме номинальной мощности или максимального крутящего момента, в случае отклонения от этих расчетных условий существенно изменяют свои показатели. Поэтому, чтобы не допускать чрезмерного ухудшения мощностных и экономических характеристик силовых установок, при изменении режимов их работы необходима автоматическая перенастройка регулировочных параметров.

В той или иной степени перенастройка регулировок применялась на всех двигателях прошлых лет, причем от поколения к поколению число регулируемых параметров непрерывно повышалось, а допуск на разброс их значений ужесточался.

Для улучшения топливной экономичности на нерасчетных режимах осуществляется изменение состава смеси, регулирование угла опережения зажигания и стабилизация теплового режима. Такая перенастройка выполняется по программам, полученным на основе экспериментального исследования регулировочных характеристик двигателей. Реализация этих программ обычно осуществляется за счет подбора и оптимизации дозирующих характеристик карбюратора, а также характеристик центробежного и вакуумного регуляторов опережения зажигания. Тепловой режим стабилизируется термостатами и автоматическими муфтами привода вентилятора.

Однако, как было показано в предыдущих разделах, эффективность энергопреобразования зависит от значительно большего числа факторов, чем это учитывается в обычных конструкциях. Кроме того, традиционными способами и средствами не всегда удается реализовать сложные программы управления при необходимом ужесточении допусков на разброс регулировок.

Чтобы обеспечить в любой точке поля эксплуатационных режимов работы двигателя получение необходимой мощности при минимальном расходе топлива, отсутствии детонационного сгорания и допустимом выбросе вредных веществ, необходимо более точно воздействовать на всю совокупность регулировочных параметров. Такое оптимальное управление двигателем может строиться с использованием одного из двух принципов:

• управление комплексом регулировочных параметров на основе заложенных в систему программ;

• самонастраивающееся или адаптивное управление.

Первый принцип продолжает тенденции традиционного управления бензиновыми двигателями, но реагирует на значительно большее число параметров, характеризующих условия и режимы их работы.

Обычно такие системы (рис. 1.2.1, а) включают в себя совокупность первичных преобразователей 7, измеряющих основные параметры, в зависимости от значений которых строится управление. Сигналы, поступающие от преобразователей, обрабатываются в электронном блоке управления 2 с использованием как аналоговых, так и цифровых принципов преобразования информации. Цифровые системы выполняются на основе микропроцессоров, собранных на базе больших интегральных схем.

Микропроцессор осуществляет сравнение полученной информации о режиме и условиях работы двигателя, по заданной программе определяет оптимальные для этих условий значения регулировочных параметров, сравнивает их с реальными и при необходимости вырабатывает команду на корректирование регулировок, которая направляется к исполнительным механизмам.

Программные системы обычно воздействуют на дозирование топлива (цикловую подачу топлива) и угол опережения зажигания. При этом система топливопитания может быть оборудована как карбюратором, так и аппаратурой впрыскивания топлива. Описанная система постоянно устанавливает исполнительные элементы в положение, соответствующее приготовлению более выгодного состава смеси.

Значительно больший эффект от оптимального управления возможен при применении вместо карбюратора более сложной аппаратуры для впрыскивания топлива.

Система впрыскивания топлива в бензиновых двигателях уже сама по себе позволяет уменьшить неравномерность распределения смеси по циклам и цилиндрам, дает возможность снизить гидравлическое сопротивление впускного тракта и температуру заряда, а также несколько повысить степень сжатия, что в комплексе обеспечивает повышение мощности двигателя до 10... 15%.

В сочетании с электронным управлением впрыскивание топлива дает дополнительный выигрыш в эффективности энергопреобразования, в связи с чем этим системам в настоящее время уделяется серьезное внимание.

Рис. 1.2.1. Схемы систем оптимального управления двигателем:

а - программное управление; б - адаптивное управление.

 

1 - датчики; 2 - электронный блок управления; 3 - исполнительные устройства; φкв - угол поворота коленчатого вала; φдр - угол открытия дроссельной заслонки; GB - расход воздуха; Тож - температура охлаждающей жидкости; То - температура окружающей среды; gu - цикловая подача топлива; θз- угол опережения зажигания; ДД - датчик детонации; ДО2 - кислородный датчик; АЦП - аналого-цифровой преобразователь; ПЗУ - постоянное запоминающее устройство; ЭБУ - электронный блок управления

 

Существуют и более сложные образцы двигателей, в которых электроника, кроме перечисленных параметров, автоматически регулирует частоту вращения коленчатого вала двигателя, температуру охлаждающей жидкости, температуру воздуха в салоне автомобиля, предотвращает детонацию, управляет работой коробки передач и т.д.

В ряде опытных образцов в число оптимизируемых параметров включаются управляемые фазы газораспределения и регулирование турбонаддува.

Однако программное управление, несмотря на его постоянное усложнение за счет включения в состав обрабатываемой информации все большего числа параметров, не обеспечивает в полной мере действительно оптимального управления. Поэтому в последние годы внимание ученых и конструкторов привлекают адаптивные системы.

Идея таких систем заключается в том, что в качестве оптимизируемых принимается ограниченное количество параметров, непосредственно характеризующих эффективность энергопреобразования. В полной мере этой идее отвечала бы такая система, в которой измеряются и оптимизируются такие показатели энергопреобразования, как крутящий момент и удельный расход топлива. Однако попытки создания подобных систем показали, что измерение и экстремальное управление этими параметрами представляет собой чрезвычайно сложную техническую задачу, в связи с чем, она пока получает частичное решение.

Одним из распространенных способов осуществления адаптивного принципа управления является управление топливоподачей по отклонению состава горючей смеси, приготавливаемой карбюратором или системой впрыскивания топлива, от стехиометрического (рис. 1.2.1, б). Эти отклонения регистрируются по содержанию свободного кислорода в отработавших газах с помощью кислородного преобразователя (датчика), называемого λ-зондом.

Относительно новым подходом к управлению двигателями с принудительным воспламенением является качественное или смешанное регулирование мощности. Применение качественного регулирования предусматривает изменение мощности только за счет соответствующего изменения подачи топлива без дросселирования потока воздуха на впуске. В этом варианте при уменьшении нагрузки не увеличиваются насосные потери и не возрастает коэффициент остаточных газов, повышаются давление и температура в конце сжатия, что в целом создает предпосылки для повышения эффективности энергопреобразования.

Однако при качественном регулировании уменьшение подачи топлива при неизменном наполнении рабочей полости воздушным зарядом существенно (в 5...6 раз) повышает коэффициент избытка воздуха, что делает невозможным сгорание такой горючей смеси при традиционном способе ее воспламенения. Поэтому переход к качественному или частично качественному регулированию обычно связан с использованием специальных способов воспламенения и сжигания бедных смесей. В частности, определенные возможности в этой области имеют способы расслоенного и разделенного смесеобразования.

Частично качественное регулирование мощности использовано в двигателях с непосредственным впрыскиванием бензина. Системы непосредственного впрыскивания работают по сложной программе компьютерного управления. Основным управляющим параметром является положение педали подачи топлива. В зависимости от него устанавливается угол открытия дроссельной заслонки, изменяется давление впрыскивания топлива, регулируются фазы газораспределения и моменты впрыскивания и зажигания. Может изменяться и энергия искрового разряда.

Так, например, в двигателе Peugeot при полной подаче топлива давление впрыскивания увеличивается до 10 МПа, а на режиме холостого хода снижается до 7 МПа. На переходных режимах это давление падает до 3 МПа.

При послойном смесеобразовании на частичных нагрузках, когда в зоне свечи сосредоточена обогащенная часть заряда, а на периферии камеры сгорания отношение «воздух-топливо» увеличивается до 30:1, энергия искрового разряда возрастает до 100 мДж.

При полной нагрузке, когда за счет более раннего впрыскивания топлива образуется достаточно равномерная горючая смесь, близкая по своему составу к стехиометрической, энергия искрообразования снижается до 50 мДж. Используется также увеличение количества остаточных газов на режимах, наиболее опасных с точки зрения образования оксидов азота.

Регулирование общего избытка воздуха осуществляется за счет автономного управления дроссельной заслонкой. При полной подаче топлива (педаль управления подачей нажата полностью) дроссельная заслонка открыта, что обеспечивает образование стехиометрической смеси. На режиме холостого хода дроссельная заслонка открывается на 20 градусов относительно ее закрытого состояния, что значительно превышает степень открытия заслонки в традиционных схемах на этом режиме. Правда, как было уже указано выше, качественное регулирование усложняет работу трехкомпонентных нейтрализаторов, которые переводятся на режим накопления и периодической разовой нейтрализации оксидов азота.

В связи с этим появились конструкции (например, двигатели SAAB), которые позволяют применить своеобразное качественное регулирование. В этих двигателях осуществляется управляемое горение SAAB Combustion Control (SCC) при непосредственном впрыскивании бензина, регулируемых фазах газораспределения и двух различных искровых зазорах между электродами [ ].

Впрыскивание топлива осуществляется с помощью сжатого воздуха форсункой в конце выпуска в период перекрытия клапанов. Вследствие повышенного давления в цилиндре часть топлива, смешанного с отработавшими газами, выбрасывается через открытые клапаны как в выпускную, так и во впускную систему. Начавшееся после верхней мертвой точки (ВМТ) «всасывающее» движение поршня возвращает эти «выбросы» в цилиндр, а после закрытия выпускного клапана в рабочую полость поступает тройная смесь из топлива, воздуха и отработавших газов, причем количество воздуха в ней увеличивается в зависимости от изменяемой продолжительности открытия впускного клапана. В средней части процесса сжатия в цилиндр подается дополнительный воздух, обеспечивающий турбулизацию заряда с целью создания благоприятных условий для воспламенения и сгорания топлива.

Сложная система управления обеспечивает на всех режимах поддержание отношения «воздух-топливо» в пределах 14,6... 14,7, а остальная часть заряда дополняется отработавшими газами. На малых нагрузках их относительное количество в рабочем теле может достигать 70%. Постоянство состава обогащенной смеси и ее повышенная за счет отработавших газов температура позволяет использовать стандартные трехкомпонентные нейтрализаторы.

Зажигание смеси обеспечивается искровыми разрядами между электродами. Один из них, к которому подводится высоковольтный импульс, выполнен заодно с форсункой. «Массовым» является боковой Г-образный электрод, образующий с центральным зазор в 3.. .5 мм, а также выступ в поршне (искровой зазор 1 мм). Первый работает при частичных нагрузках и за счет высокой энергии (80 мДж) и размера искры обеспечивает раннее и надежное воспламенение смеси с большим содержанием отработавших газов. При полной нагрузке искра образуется во втором искровом зазоре, равном 1 мм. Двигатель с процессом SCC укладывается в самые жесткие нормы по выбросам вредных веществ.

Кроме качественного регулирования, улучшающего показатели двигателей на режимах малых нагрузок, может использоваться альтернативный прием - сужение необходимого диапазона нагрузочных режимов в области наиболее благоприятных условий эффективного энергопреобразования.

В систему оптимального управления входит также установка на каждом режиме оптимального угла опережения зажигания.

Серийные центробежные и вакуумные регуляторы не обеспечивают необходимой точности выполнения этой программы, а главное, не реагируют на многие дополнительные факторы.

Наиболее полно эти сложные оптимизационные программы (рис. 1.2.2) можно реализовать в электронных системах зажигания с помощью микропроцессоров.

 

Рис. 1.2.2. Программа оптимального управления углом опережения зажигания

 

 

Применение таких систем наряду с ужесточением допусков на отклонение от оптимальных углов опережения позволяет повысить степень сжатия и несколько снизить расход топлива.

В ряде случаев управление углом опережения зажигания осуществляется за счет постоянного его удержания на границе возникновения детонации, т.е. по адаптивному принципу. С этой целью двигатели снабжаются пьезокерамическим преобразователем DD, который реагирует на вибрации конструктивных элементов, возникающие при детонационном сгорании. Система управления работает в режиме постоянных принудительных колебаний угла опережения, причем в каждом цикле увеличение угла ограничивается по сигналу преобразователя детонации, а уменьшение осуществляется на установленную величину. Такая система позволяет дополнительно увеличить степень сжатия двигателей, максимально снижает ухудшение эффективности энергопреобразования при использовании топлив с понижены октановым числом.

Однако, наиболее перспективной представляется программа, учитывающая термодинамические процессы в цилиндрах двигателя при сгорании топливно-воздушной смеси.

 


Дата добавления: 2018-05-13; просмотров: 318; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!