Алюминий и его сплавы: определение, назначение, маркировка.



Алюминий - легкий металл серебристо-белого цвета с высокой электро- и теплопроводностью; плотность его 2700кг/м^3, температура плавления в зависимости от чистоты колеблется в пределах 660—667°С. В отожженном состоянии алюминий имеет малую прочность (σв=80—100 МПа), низкую твердость (НВ 20-40), но обладает высокой пластичностью (β=35-40%). Первичный алюминий делят натри группы: алюминий особой чистоты (маркаА999), высокой чистоты (четыре марки) и технической чистоты. Предусмотрено восемь марок, допускающих содержание примесей 0,15-1%. Название марки указывает ее чистоту. Например, марка А8 обозначает, что в металле содержится 99,8% алюминия, а в марке А99—99,99% алюминия. Алюминий технической чистоты получают в электролизных ваннах. Путем электролитического рафинирования алюминия-сырца получают алюминий марок высокой чистоты. Алюминий хорошо обрабатывается давлением, сваривается, но плохо поддается резанию. Имеет высокую стойкость против атмосферной коррозии и в пресной воде. На воздухе алюминий быстро окисляется, покрываясь тонкой плотной пленкой окиси, которая не пропускает кислород в толщу металла, что и обеспечивает его защиту от коррозии. В качестве конструкционных материалов алюминий широко применяют в виде сплавов с другими металлами и неметаллами (медь, марганец, магний, кремний, железо, никель, титан, бериллий и др.). Алюминиевые сплавы сочетают в себе лучшие свойства чистого алюминия и . повышенные прочностные характеристики легирующих добавок. Так, железо, никель, титан повышают жаропрочность алюминиевых сплавов. Медь, марганец, магний обеспечивают упрочняющую термообработку алюминиевых сплавов. В результате легирования и термической обработки удается в несколько раз повысить прочность (σВ с 100 до 500 МПа) и твердость (НВ с 20 до 150) алюминия. Все сплавы алюминия подразделяют на деформируемые и литейные. Деформируемые алюминиевые сплавы. Деформируемые алюминиевые сплавы применяют для получения листов, ленты, фасонных профилей, проволоки и различных деталей штамповкой, прессованием, ковкой. В зависимости от химического состава деформируемые алюминиевые сплавы делят на 7 групп; содержат 2—3 и более легирующих компонента в количестве 0,2—4% каждого. Например, сплавы алюминия с магнием и марганцем; алюминия с медью, магнием, марганцем и др.

Деформируемые сплавы разделяют на сплавы, упрочняемые и не упрочняемые термической обработкой. Деформируемые сплавы, подвергаемые механической и термической обработке, имеют буквенные обозначения, указывающие на характер обработки (см. примечания к табл. 9).

Термически не упрочняемые сплавы — это сплавы алюминия с марганцем (Амц) и алюминия с магнием и марганцем (Амг). Он и обладают умеренной прочностью, высокой коррозионной стойкостью, хорошей свариваемостью и пластичностью (табл. 9).

Термически упрочняемые сплавы (см. табл. 9) приобретают высокие механические свойства и хорошую сопротивляемость коррозии только в результате термической обработки. Наиболее распространены сплавы алюминия с медью, магнием, марганцем (дюралюмины) и алюминия с медью, магнием, марганцем и цинком (сплавы высокой прочности).

Дюралюмины маркируют буквой Д, после которой стоит цифра, обозначающая условный номер сплава. Термическая обработка дюралюминов состоит в закалке, естественном или искусственном старении. Для закалки сплавы нагревают до 500°С и охлаждают в воде. Естественное старение производят при комнатной температуре в течение 5—7 сут.

Пластическая и упругая деформация.

Деформация – это изменение формы и размеров тела, деформация может вызываться воздействием внешних сил, а также другими физико-механическими процессами, которые происходят в теле. К деформациям относятся такие явления, как сдвиг, сжатие, растяжение, изгиб и кручение.Упругая деформация – это деформация, которая исчезает после снятия нагрузки. Упругая деформация не вызывает остаточных изменений в свойствах и структуре металла; под действием приложенной нагрузки происходит незначительное обратимое смещение атомов.При растяжении монокристалла возрастают расстояния между атомами, а при сжатии атомы сближаются. При смещении атомов из положения равновесия нарушается баланс сил притяжения и электростатического отталкивания. После снятия нагрузки смещенные атомы из-за действия сил притяжения или отталкивания возвращаются в исходное равновесное состояние и кристаллы приобретают первоначальные размеры форму.Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки.Самое малое напряжение вызывает деформацию, причем начальные деформации являются всегда упругими и их величина находится в прямой зависимости от напряжения. Основными механическими свойствами являются прочность, пластичность, упругость.Важное значение имеет пластичность, она определяет возможность изготовления изделий различными способами обработки давлением. Эти способы основаны на пластическом деформировании металла.

Материалы, которые имеют повышенную пластичность, менее чувствительны к концентраторам напряжений. Для этого проводят сравнительную оценку различных металлов и сплавов, а также контроль их качества при изготовлении изделий.Физическая природа деформации металловПод действием напряжений происходит изменение формы и размеров тела. Напряжения возникают при действии на тело внешних сил растяжения, сжатия, а также в результате фазовых превращений и некоторых других физико-химических процессов, которые связанны с изменением объема. Металл, который находится в напряженном состоянии, при любом виде напряжения всегда испытывает напряжения нормальные и касательные, деформация под действием напряжений может быть упругой и пластической. Пластическая происходит под действием касательных напряжений.

Упругая – это такая деформация, которая после прекращения действия, вызвавшего напряжение, исчезает полностью. При упругом деформировании происходит изменение расстояний между атомами в кристаллической решетке металла.С увеличением межатомных расстояний возрастают силы взаимного притяжения атомов. При снятии напряжения под действием этих сил атомы возвращаются в исходное положение. Искажение решетки исчезает, тело полностью восстанавливает свою форму и размеры. Если нормальные напряжения достигают значения сил межатомной связи, то произойдет хрупкое разрушение путем отрыва. Упругую деформацию вызывают небольшие касательные напряжения.Пластической называется деформация, остающаяся после прекращения действия вызвавших ее напряжений. При пластической деформации в кристаллической решетке металла под действием касательных напряжений происходит необратимое перемещение атомов. При небольших напряжениях атомы смещаются незначительно и после снятия напряжений возвращаются в исходное положение. При увеличении касательного напряжения наблюдается необратимое смещение атомов на параметр решетки, т. е. происходит пластическая деформация.

При возрастании касательных напряжений выше определенной величины деформация становится необратимой. При снятии нагрузки устраняется упругая составляющая деформации. Часть деформации, которую называют пластической, остается.При пластической деформации необратимо изменяется структура металла и его свойства. Пластическая деформация осуществляется скольжением и двойникованием.Скольжение в кристаллической решетке протекает по плоскостям и направлениям с плотной упаковкой атомов, где сопротивление сдвигу наименьшее. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т. е. связь между ними наименьшая. Плоскости скольжения и направления скольжения, лежащие в этих плоскостях, образуют систему скольжения. В металлах могут действовать одна или одновременно несколько систем скольжения.Металлы с кубической кристаллической решеткой (ГЦК и ОЦК) обладают высокой пластичностью, скольжение в них происходит во многих направлениях.Процесс скольжения не следует представлять как одновременное передвижение одной части кристалла относительно другой, оно осуществляется в результате перемещения в кристалле дислокаций. Перемещение дислокации в плоскости скольжения ММ через кристалл приводит к смещению соответствующей части кристалла на одно межплоскостное расстояние, при этом справа на поверхности кристалла образуется ступенька.


Дата добавления: 2018-05-12; просмотров: 689; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!